

February 12, 2016

Mr. Todd Davis Site Assessment Manager U.S. Environmental Protection Agency, Region 7 11201 Renner Boulevard Lenexa, Kansas 66219

Subject:

Preliminary Assessment Report

Tanglefoot Lane Site, Bettendorf, Iowa

U.S. EPA Region 7 START 4, Contract No. EP-S7-13-06, Task Order No. 0111.002

Task Monitor: Todd H. Davis, Site Assessment Manager

Dear Mr. Davis:

Tetra Tech, Inc. (Tetra Tech) is submitting the enclosed Preliminary Assessment report regarding the Tanglefoot Lane site in Bettendorf, Iowa, If you have any questions or comments regarding this submittal, please contact the Project Manager at (816) 412-1784.

Sincerely,

Adam Watkins

START Project Manager

START Program Manager

Enclosures

cc:

Debra Dorsey, START Project Officer (cover letter only)

40508888 Superfund

0u00

2/12/16

55

PRELIMINARY ASSESSMENT REPORT TANGLEFOOT LANE SITE BETTENDORF, IOWA

Superfund Technical Assessment and Response Team (START) 4 Contract

Contract No. EP-S7-13-06, Task Order No. 0111.002

Prepared For:

U.S. Environmental Protection Agency Region 7 Superfund Division 11201 Renner Boulevard Lenexa, Kansas 66219

February 12, 2016

Prepared By:

Tetra Tech, Inc. 415 Oak Street Kansas City, Missouri 64106 (816) 412-1741

CONTENTS

<u>Secti</u>	<u>on</u>		<u>Page</u>
1.0	INTR	RODUCTION	1
2.0	SITE	E INFORMATION	2
	2.1	LOCATION/DESCRIPTION	2
	2.2	BACKGROUND	
	2.3	GEOLOGY AND HYDROLOGY	
	2.4	PREVIOUS INVESTIGATIONS	4
	2.5	WASTE CHARACTERISTICS	5
		2.5.1 Tetrachloroethene	
		2.5.2 Trichloroethene	
		2.5.3 Polychlorinated Biphenyls	6
3.0	PREI	LIMINARY ASSESSMENT ACTIVITIES	7
	3.1	SUB-SURFACE SOIL SAMPLING	
	3.2	GROUNDWATER SAMPLING	8
	3.3	SOIL-GAS SAMPLING	
	3.4	SURFACE WATER AND SEDIMENT SAMPLING	
	3.5	QUALITY CONTROL SAMPLING	
	3.6	DEVIATIONS FROM THE QUALITY ASSURANCE PROJECT PLA	N13
4.0	ANA	LYTICAL DATA SUMMARY	14
	4.1	SUBSURFACE SOIL SAMPLING	
	4.2	GROUNDWATER SAMPLING	
	4.3	SOIL-GAS SAMPLING	
	4.4	SURFACE WATER AND SEDIMENT SAMPLING	
	4.5	QUALITY CONTROL	25
5.0	HAZ.	ARD RANKING SYSTEM FACTORS	26
	5.1	SOURCES OF CONTAMINATION	
	5.2	GROUNDWATER PATHWAY	26
		5.2.1 Groundwater Targets	
		5.2.2 Groundwater Pathway Conclusions	26
	5.3	SURFACE WATER PATHWAY	27
		5.3.1 Surface Water Targets	27
		5.3.2 Surface Water Pathway Conclusions	27

CONTENTS (Continued)

Section	<u>1</u>			<u>Page</u>
	5.4	SOIL A	AND SEDIMENT EXPOSURE	27
		5.4.1 5.4.2	Soil and Sediment Exposure Targets	28
	5.5	AIR PA	ATHWAY	28
		5.5.1 5.5.2	Air Pathway Targets	
6.0	EMER	GENCY	RESPONSE CONSIDERATIONS	29
7.0	SUMM	IARY		30
8.0	REFE	RENCES	5	31
			APPENDICES	
Appen	<u>dix</u>			
Α	FIGUR	RES		
В	PHOTO	OGRAP	HIC LOG	
С	FIELD	LOGBO	ООК	
D	FIELD	SHEET	S AND CHAIN-OF-CUSTODY RECORDS	
E	ANAL	YTICAI	L DATA PACKAGE	

TABLES

<u>Table</u>		<u>Page</u>
1	SUMMARY OF HISTORICAL LAND USE	3
2	DPT SUBSURFACE SOIL SAMPLE SUMMARY	8
3	DPT GROUNDWATER SAMPLE SUMMARY	9
4	DPT SOIL-GAS SAMPLE SUMMARY	10
5	SURFACE WATER SAMPLE SUMMARY	11
6	SEDIMENT SAMPLE SUMMARY	12
7	ANALYTICAL RESULTS FROM DPT SUBSURFACE SOIL SAMPLES	15
8	ANALYTICAL RESULTS FROM DPT GROUNDWATER SAMPLES	18
9	ANALYTICAL RESULTS FROM DPT SOIL-GAS SAMPLES	20
10	ANALYTICAL RESULTS FROM SURFACE WATER SAMPLES	22
11	ANALYTICAL RESULTS FROM SEDIMENT SAMPLES	24

1.0 INTRODUCTION

The U.S. Environmental Protection Agency (EPA) Region 7 Superfund Division tasked Tetra Tech, Inc., (Tetra Tech), under Superfund Technical Assessment and Response Team (START) 4 Contract No. EP-S7-13-06, Task Order No. 0111.002, to conduct a preliminary assessment (PA) at the Tanglefoot Lane site (the site) in Bettendorf, Iowa. The PA is in response to discovery of contaminants at the site. The purpose of this investigation is to evaluate whether any threats to human health or the environment exist as a result of the previously identified contamination. This PA report presents elements of the sampling strategy and analytical methods applied during the assessment. Furthermore, the report summarizes PA analytical results and discusses Hazard Ranking System (HRS) factors/Emergency Response (ER) considerations.

This PA accords with EPA's Guidance for Performing Preliminary Assessments under CERCLA, publication 9345.0-01A, September 1991; Guidance for Performing Site Inspections under CERCLA, Interim Final, publication 9345.1-05, September 1992; and Reference Guide titled "Improved Site Assessment: Abbreviated Preliminary Assessments," publication 98 963308, October 1999.

2.0 SITE INFORMATION

This section presents information about the site.

2.1 LOCATION/DESCRIPTION

The site is within the City of Bettendorf in Scott County, lowa, and has geographical coordinates of 41.560218 degrees north latitude and 90.474599 degrees west longitude (see Appendix A, Figure 1). It consists of two contiguous parcels, 841523010 and 841433011, totaling approximately 18 acres, off Tanglefoot Lane between Devils Glen Road and Middle Road. Records from the Scott County Assessor's Office show that Parcel 841523010 consists of acreage north and south of Tanglefoot Lane; however, this PA is limited to the acreage south of Tanglefoot Lane (see Appendix A, Figure 2).

Most of the acreage at the site is timber and grassland with steep topographical slopes to the south toward an unnamed creek that discharges to a neighboring residential pond. Adjacent property to the north is developed for residential use; adjacent properties to the east and west are residential/commercial; adjacent property across the creek to the south is improved with a church, parking lots, and residential use.

2.2 BACKGROUND

The site property is currently owned by (b) (6) (b) (6) and (b) (6)

They reported that their father, Harry Meinert, now deceased, owned the property consisting of a farmhouse with extensive acreage since their childhood. Table 1 summarizes previous uses of the site:

TABLE 1

SUMMARY OF HISTORICAL LAND USE TANGLEFOOT LANE SITE BETTENDORF, IOWA

Date or Date Range	Use
1937-1950s	The site was a homestead, used for farming; significant portion was timber with a large ravine.
1950s-1960s	Current owners of the site reported that during this time, Harry Meinert began collecting and storing/disposing of municipal and possibly industrial waste materials.
1960s-1970s	Waste collection and on-site disposal of materials occurred.
1970s-1980s	Storage/disposal stopped at some time in the late 1960s or early 1970s. Vegetation reclaimed the landfill area.
1980s-1990s	The site was passive.
1990s-2000s	The site was passive.
2000s-2011	The site was passive.
2012	The site was used to store fill material for the Grayhawk construction project on the north side of Tanglefoot Lane.

Source: EnviroNET Inc. (EnviroNET) 2012.

2.3 GEOLOGY AND HYDROLOGY

The site is in the Mississippi River Valley of the Great Plains Region of the Central Interior of the United States. The region is covered with glacial sediments that have eroded to form a landscape consisting of uplands bisected by rivers, creeks, and streams that discharge into the Mississippi River. Site-specific soil information provided in the United States Department of Agriculture Soil Survey for Scott County, Iowa, indicates that the site is mostly characterized by Downs Silt Loam, Lindley Loam, and Nodaway Silt Loam. The Lindley Loam and Downs Silt Loam range from 5-25% slopes (moderately sloping to steep), and from moderately eroded to severely eroded. They are well-drained soils with permeabilities ranging from moderately slow (Lindley Loam) to moderate (Downs Silt Loam). Runoff from these soils ranges from medium to very rapid. The Nodaway Silt Loam has 0-2% slopes, and is a moderately well-drained soil found in areas of recent deposition. Permeability of the Nodaway soil is moderate, it has a slow runoff rate, and its seasonal high water table is at depths of 3-5 feet.

Observed geology in the vicinity of the former landfill during prior investigations included surface fill materials, silty clay loam and sandy silt in thin seams, dense dry stiff to fat clays of glacial origin (various thicknesses), sand lenses, and sandy saturated substrate at depths of 12 to 15 feet. The fill area included degraded materials mixed with sand and clay, with glass, plastic, and debris mixed in at various intervals. Depth to groundwater varies from approximately 35 feet below grade near the roadway to approximately 1 foot below grade near the southern site boundary.

Observed geology in the vicinity of the former oil pit (see Appendix A, Figure 2) included surface debris in a limited area, silty clay loam and loess, and well-rounded oxidized sand. Thin, dry, discontinuous sand lenses were observed above a depth of 20 feet.

Direction of groundwater flow is to the south. Groundwater flows toward the un-named intermittent creek along the southern boundary of the site. Depth of groundwater at the southern end of the site is consistent with creek levels. The creek is an unnamed tributary of Crow Creek, which flows southeast toward the Mississippi River (Tetra Tech 2015).

2.4 PREVIOUS INVESTIGATIONS

The following are descriptions of previous investigations at the Tanglefoot Lane site:

EnviroNET - Phase I Environmental Site Assessment

EnviroNET conducted a Phase I Environmental Site Assessment (ESA) of the site in 2012. The ESA revealed that the site had previously served as a landfill for municipal waste, and possibly industrial waste. In addition, it was learned that Mr. Harry Meinert was in the "oil and chip" business, which included storage of waste oil for application to country roads for dust control. During the site inspection, EnviroNET observed presence of waste on the ground surface among weeds and trees. The type of waste observed consisted of glass, plastic, and metal containers including 55-gallon drums, scrap metal, and limited construction debris. Recognized environmental conditions (REC) identified during the Phase I ESA included:

- Unpermitted storage of municipal waste on the property
- Possible presence of hazardous/contaminated waste in containers, in soil, in leachate, and/or in groundwater
- Former storage of waste oil on the property in clay pits
- Presence of leachate drainage pipe extending from the fill area and draining downhill.

EnviroNET - Phase II Environmental Investigation

EnviroNET conducted a Phase II ESA in 2012/2013. Part of the Phase II ESA involved efforts to confirm or eliminate RECs identified during the Phase I ESA. During the Phase II ESA, contamination detected in soil and groundwater indicated significant breakdown of solvents. However, analytical results from soil and groundwater samples indicated that most of the contamination—including tetrachloroethene (PCE),

polychlorinated biphenyls (PCB), and trichloroethene (TCE)—had remained with the waste or in leachate within the waste. EnviroNET concluded that these contaminants would remain there, leaching slowly over time until removal of the waste. The un-named creek inside the southern property line was not assessed during the Phase II ESA.

2.5 WASTE CHARACTERISTICS

This section discusses waste characteristics of known contaminants at the Tanglefoot Lane site.

2.5.1 Tetrachloroethene

PCE is a chlorinated solvent with an ether-like odor, and is typically used in dry cleaning operations and as a degreaser for metal parts (Agency for Toxic Substances and Disease Registry [ATSDR] 1997). PCE is denser than water and tends to be found at greater depths with increasing distance from the source area.

PCE was introduced as a dry cleaning solvent in 1934, and by 1948 had replaced carbon tetrachloride (CCl₄) as the major chlorinated dry cleaning solvent used in the United States (petroleum solvents still dominated overall). By 1962, dry cleaning operations accounted for 90 percent of the PCE used in the United States. At one time, PCE had been mixed with grain protectants and certain liquid grain fumigants, but this was no longer approved by 1980 (Meister Publishing Company [Meister] 1980). PCE degrades to TCE.

2.5.2 Trichloroethene

TCE is a nonflammable, colorless liquid with a somewhat sweet odor and a sweet, burning taste (ATSDR 2003). It is used mainly as a solvent to remove grease from metal parts, and is an ingredient in adhesives, paint removers, typewriter correction fluids, and spot removers. TCE is denser than water and is typically found at greater depths with increased time or distance from the source area. TCE is reasonably anticipated to be a human carcinogen. Drinking small amounts of TCE for long periods may cause liver and kidney damage, impaired immune system function, and impaired fetal development in pregnant women (ATSDR 2003). The *cis* and *trans* isomers of 1,2-dichloroethene (DCE), as well as vinyl chloride, are common degradation products from TCE.

2.5.3 Polychlorinated Biphenyls

PCBs belong to a broad family of man-made organic chemicals known as chlorinated hydrocarbons. PCBs were domestically manufactured from 1929 until their manufacture was banned in 1979. They have a range of toxicity and vary in consistency from thin, light-colored liquids to yellow or black waxy solids. Due to their non-flammability, chemical stability, high boiling point, and electrical insulating properties, PCBs were used in hundreds of industrial and commercial applications including electrical, heat transfer, and hydraulic equipment; as plasticizers in paints, plastics, and rubber products; in pigments, dyes, and carbonless copy paper; and many other industrial applications. PCBs have been demonstrated to cause cancer, as well as a variety of other adverse health effects on the immune system, reproductive system. nervous system, and endocrine system (EPA 2014b).

3.0 PRELIMINARY ASSESSMENT ACTIVITIES

This section discusses PA activities at the site. Unless otherwise noted in this report, sampling and analytical procedures followed standard operating procedures (SOP) specified in the approved, site-specific Quality Assurance Project Plan (QAPP). For this PA, START members Adam Watkins and Keith Brown conducted sampling activities, and Quan Do, of Seagull Environmental, Inc., operated the Geoprobe® direct-push technology (DPT) unit. Sample locations were selected based on site knowledge and previous investigation results. Sampling-related activities were recorded in a site logbook, a copy of which is in Appendix C. In addition, a photographic log documenting site conditions and preliminary assessment activities is in Appendix B. A field sheet was completed for each sample collected as part of the PA; copies of all field sheets are in Appendix D. The field sheets included the following information: property ownership information, exact sample locations (depths and global positioning system [GPS] coordinates), and analyses to be performed. After sample collection, each sample was labeled and packaged accordingly, and placed in a cooler maintained at or below a temperature of 4 degrees Celsius (°C) from time of collection until submittal for laboratory analysis.

3.1 SUB-SURFACE SOIL SAMPLING

To assess the soil exposure pathway, soil borings were advanced and sampled at six locations (see Appendix A, Figure 3). By use of DPT, a soil sampler was advanced at each location. Soil cores were screened by use of a photoionization detector (PID) for presence of volatile organic compounds (VOC). Soil samples were collected within the two depth intervals exhibiting the highest VOC concentrations based on PID readings or visually apparent staining; if no indications of contamination were present, soil samples were collected within the depth interval of 2 to 4 feet bgs and from immediately above the water table.

Each sampled interval included grab samples for VOC and total petroleum hydrocarbons (TPH)purgeables (gasoline-range organics [GRO]) analyses. Grab samples for VOC analysis were collected in
accordance with EPA SW-846 Method 5035, consisting of two 40-milliliter vials preserved with sodium
bisulfate containing approximately 5 grams of soil, and two unpreserved 40-milliliter vials packed with
soil. The grab sample for TPH-purgeables analysis consisted of two additional unpreserved 40-milliliter
vials packed with soil. Remaining soil from each sampled interval was homogenized and placed into three
8-ounce jars for analyses for semivolatile organic compounds (SVOC), metals (plus mercury),
TPH-extractables (diesel-range organics [DRO] and oil-range organics [ORO]), pesticides, PCBs, and

herbicides. After completion of sampling, all DPT boreholes were plugged with bentonite from the bottom of the hole to the ground surface. Table 2 summarizes sub-surface soil samples collected during the PA.

TABLE 2 DPT SUBSURFACE SOIL SAMPLE SUMMARY TANGLEFOOT LANE SITE BETTENDORF, IOWA

EPA Sample Number	Sample Depth (ft bgs)	Latitude (degrees north)	Longitude (degrees west)	Time Sampled	Date Sampled
6910-101	3-5	41.560112	00 477 422	17:00	0/14/2015
6910-102	5-7	41.560113	90.477432	17:15	9/14/2015
6910-103	2-4	41.5(0224	00 47(502	09:45	
6910-104	14-16	41.560224	90.476593	10:10	7
6910-105	14-16	41.560005	00.47(200	12:10	9/15/2015
6910-106	2-4	41.560005	90.476380	12:22	9/15/2015
6910-107	2-4	41.550053	00 475205	16:10	1
6910-108	10-12	41.559953	90.475395	16:25	
6910-109	4-6	41.560460	00 472504	10:40	
6910-110	13-15	41.560462	90.473504	11:00	0/16/2015
6910-111	2-4	41.550075	00 472200	12:28	9/16/2015
6910-112	12-14	41.559875	90.473288	12:40	

Notes:

bgs

Below ground surface

EPA U.S. Environmental Protection Agency

3.2 GROUNDWATER SAMPLING

To assess the groundwater exposure pathway, groundwater samples were collected from temporary wells at four locations (see Appendix A, Figure 4). START attempted to collect groundwater samples from temporary wells at six locations; however, groundwater was not encountered at two locations. At each temporary well location, a Geoprobe® Screen Point 15 sampling apparatus containing a reusable stainless steel screen was advanced to just below the water table, where the screen was exposed to the aquafer. After the screen was deployed at the bottom of the well and about 1 gallon of water had been purged through the screen and tubing, a sample was collected through disposable polyethylene tubing by use of a pump or check valve placed at the bottom of the tubing.

Samples were analyzed for VOCs, TPH, SVOCs, metals (plus mercury, total and dissolved), pesticides, PCBs, and herbicides. Groundwater samples for VOCs analysis were collected in two 40-milliliter vials preserved with hydrochloric acid (HCl). The samples to undergo analysis for TPH-purgeables (GRO) were collected in two unpreserved 40-milliliter vials. Water samples submitted for analyses for SVOCs, TPH-extractables (DRO and ORO), pesticides, PCBs, and herbicides were collected in 80-ounce amber glass jugs (three per sample). Water samples for metals (plus mercury) analysis were collected in 1-liter containers and preserved with nitric acid (HNO₃) to a pH <2. Samples filtered in the field by use of a 0.45 micrometer filter were analyzed for dissolved metals; unfiltered samples were analyzed for total metals. The groundwater sampler and rods were decontaminated following sampling at each location, and new tubing was used at each location. After completion of sampling activities, all temporary wells were plugged with bentonite from the bottom of the hole to the ground surface. Table 3 summarizes DPT groundwater samples collected during the PA.

DPT GROUNDWATER SAMPLE SUMMARY
TANGLEFOOT LANE SITE
BETTENDORF, IOWA

TABLE 3

EPA Identification Number	Sample Depth (ft bgs)	Latitude (degrees north)	Longitude (degrees west)	Time Sampled	Date Sampled
6910-201	22-26	41.560113	90.477432	17:30	9/14/2015
6910-202	16-20	41.560224	90.476593	10:30	
6910-203	16-20	41.5(0005	00 476290	12.00	0/15/2015
6910-203-FD	16-20	41.560005	90.476380	13:80	9/15/2015
6910-204	14-18	41.559957	90.475403	17:00	

Notes:

bgs Below ground surface

EPA U.S. Environmental Protection Agency

t Fee

3.3 SOIL-GAS SAMPLING

Six soil-gas samples and an ambient air sample were collected. Soil-gas samples were collocated with DPT soil/groundwater sample locations. The ambient air sample was collected slightly upgradient of the site (see Appendix A, Figure 5).

Soil-gas samples were collected in accordance with Region 7 EPA/ ENSV SOP 4230.07 (*Geoprobe Operation*) and SOP 4231.2042 (*Soil-Gas Sampling*). At each location, by use of a DPT rig, steel rods were advanced to the desired depth, and then retracted about 6 inches to create a void space to allow collection of soil gas vapors. Samples were collected within the depth intervals exhibiting the highest VOC concentrations based on PID readings or visually apparent staining on soil cores; if no indications of

contamination were present, samples were collected from just above the water table. The soil-gas samples were collected through the steel rods via disposable polyethylene tubing connected to the bottom of the rod string and an evacuated Summa canister on the ground surface. By use of a vacuum pump, air in the tubing was evacuated prior to connection of the tubing to the Summa canister. After the Summa canister was connected to the tubing, a valve on the Summa canister was opened to begin sample collection. The Summa canister remained attached to the polyethylene tubing until the vacuum gauge indicated approximately 5 to 7 pounds per square inch (psi) remaining in the canister. Collection time depended on the soil type encountered during DPT activities (tighter soils, such as clays, take longer to sample).

The ambient air sample was collected into an evacuated Summa canister at approximately 5 feet above ground surface. To collect the ambient air sample, a valve on the Summa canister was slightly opened to begin sample collection. The valve on the Summa canister remained open until the vacuum gauge indicated approximately 5 to 7 psi remaining in the canister.

All samples were analyzed for VOCs. After completion of soil-gas sampling, all DPT boreholes were plugged with bentonite from the bottom of the hole to the ground surface. Table 4 summarizes ambient air and soil-gas samples collected during the PA.

TABLE 4

DPT SOIL-GAS SAMPLE SUMMARY
TANGLEFOOT LANE SITE
BETTENDORF, IOWA

EPA	Sample	Latitude	Longitude	Time 5	Sampled	Data Campled
Number Number	Depth (ft bgs)	(degrees north)	(degrees west)	Start	End	— Date Sampled
6910-1	5.5-6.0	41.560092	90.477405	18:40	18:42	9/14/2015
6910-2	3.5-4.0	41.560224	90.476585	11:31	11:33	
6910-3	3.5-4.0	41.560005	90.476373	13:40	13:43	9/15/2015
6910-4	5.5-6.0	41.559957	90.475403	16:50	16:53	
6910-5	5.5-6.0	41.560462	90.473504	11:25	11:27	0/16/2015
6910-6	4.5-5.0	41.559867	90.473303	13:49	13:51	9/16/2015
6910-7	*	41.560709	90.476415	14:30	14:33	9/17/2015

Notes:

* Ambient Air Sample; no DPT involved in sample collection.

bgs Below ground surface DPT Direct-push technology

EPA U.S. Environmental Protection Agency

ft Feet

3.4 SURFACE WATER AND SEDIMENT SAMPLING

To assess impacts on surface water and sediment, three surface water and four sediment samples were collected as part of PA sampling activities (see Appendix A, Figure 6).

Surface Water Sampling

Samples were analyzed for VOCs, TPH, SVOCs, metals (plus mercury, total and dissolved), pesticides, PCBs, and herbicides. Surface water samples collected for VOCs analysis were collected in two 40-milliliter vials preserved with HCl. The samples to undergo analysis for TPH-purgeables (GRO) were collected in two unpreserved 40-milliliter vials. Water samples submitted for analyses for SVOCs, TPH-extractables (DRO and ORO), pesticides, PCBs, and herbicides were collected in 80-ounce amber glass jugs (three per sample). Water samples for metals (plus mercury) analysis were collected in 1-liter containers and preserved with HNO₃ to a pH <2. Samples filtered in the field with a 0.45 micrometer filter were analyzed for dissolved metals; unfiltered samples were analyzed for total metals. Table 5 summarizes surface water samples collected during the PA.

TABLE 5

SURFACE WATER SAMPLE SUMMARY TANGLEFOOT LANE SITE BETTENDORF, IOWA

EPA Identification Number	Latitude (degrees north)	Longitude (degrees west)	Time Sampled	Date Sampled
6910-205	41.559677	90.472783	17:30	9/16/2015
6910-206	41.559331	90.477689	09:10	0/17/2015
6910-207	41.559252	90.476129	13:50	9/17/2015

Note:

EPA U.S. Environmental Protection Agency

Sediment Sampling

Sediment samples were collected from the top 6 inches of sediment by use of hand-held, disposable, stainless-steel spoons. At each sample location, sediment was collected for VOC and TPH-purgeables (GRO) analyses. The grab sample for VOC analysis was collected in accordance with EPA SW-846 Method 5035; it consisted of two 40-milliliter vials preserved with sodium bisulfate containing approximately 5 grams of soil, and two unpreserved 40-milliliter vials packed with soil. The grab sample for TPH-purgeables analysis consisted of two additional unpreserved 40-milliliter vials packed with

sediment. Additional sediment was then homogenized and placed into three 8-ounce jars for analyses for SVOC, metals (plus mercury), TPH-extractables (DRO and ORO), pesticides, PCBs, and herbicides. Table 6 summarizes sediment samples collected as part of the PA.

TABLE 6

SEDIMENT SAMPLE SUMMARY TANGLEFOOT LANE SITE BETTENDORF, IOWA

EPA Identification Number	Latitude (degrees north)	Longitude (degrees west)	Time Sampled	Date Sampled
6910-113	41.559677	90.472783	17:35	9/16/2015
6910-114	41.559334	90.477716	09:24	
6910-114-FD	41.559334	90.477716	09:24	9/17/2015
6910-115	41.559518	90.477745	11:35	9/1//2013
6910-116	41.559252	90.476129	14:20	

Note:

EPA U.S. Environmental Protection Agency

3.5 QUALITY CONTROL SAMPLING

Field quality control (QC) sampling for this PA included two laboratory-supplied aqueous trip blank samples, one aqueous rinsate blank sample, one aqueous field blank sample, and one air blank sample. Analytical data from the trip blanks were referenced to determine whether contamination had been introduced during transportation of the containers and samples. Additional QC sampling consisted of collecting a rinsate blank sample through a Geoprobe® groundwater sampler. The rinsate blank was analyzed to determine adequacy of decontamination procedures. Furthermore, two field blanks samples were collected to assess field/lab-introduced contamination.

3.6 DEVIATIONS FROM THE QUALITY ASSURANCE PROJECT PLAN

The following deviations from the QAPP occurred during field sampling:

- The QAPP did not specify collection of ambient air samples as part of PA sampling activities.
 However, an ambient air sample was collected slightly upgradient of the site to assess ambient air quality.
- The QAPP specified use of a PID to screen soils for presence of elevated concentrations of VOCs. However, the PID used for screening soils had battery charging issues, and use of it was discontinued after the first day of field work. This resulted in choices of soil sampling intervals based on visible soil staining, detection of odor, or the default sampling intervals stipulated in the OAPP.
- The QAPP specified submittal of one trip blank sample to EPA Region 7 laboratory. However, two trip blank samples were submitted because PA samples were delivered on separate days.
- The QAPP specified collection of groundwater samples at six temporary monitoring wells.
 However, groundwater samples were collected from only four temporary monitoring wells because groundwater was not encountered at two proposed groundwater sampling locations.
- The QAPP specified collocations of surface water and sediment sample collections. However, at
 one sample location, no surface water was present. Therefore, no surface water sample was
 collected at that sample location.

4.0 ANALYTICAL DATA SUMMARY

This section discusses analytical results from environmental samples collected during the PA at the site.

4.1 SUBSURFACE SOIL SAMPLING

On September 14-16, 2015, 13 subsurface soil samples, including 1 field duplicate, were collected from six soil borings at the site (see Appendix A, Figure 3). Samples were submitted on September 18, 2015, to EPA Region 7 laboratory for VOCs, TPH, SVOCs, metals (plus mercury), pesticides, PCBs, and herbicides analyses as part of Analytical Services Request (ASR) 6910. Analytical results were compared to EPA Superfund Chemical Data Matrix (SCDM) hazardous substance benchmarks for soil exposure pathway (EPA 2014a), and are summarized in Table 7. The complete laboratory data package for ASR 6910 is in Appendix E.

TABLE 7

ANALYTICAL RESULTS FROM DPT SUBSURFACE SOIL SAMPLES TANGLEFOOT LANE SITE BETTENDORF, IOWA

						CONTRACT				U.S. Tool	100	Ana	lytes and F	esults (µg/	/kg)			0.65					SO ICE AND	
			Herbicio	les											Metal	s				A SALVERY				
EPA Identification Number	Sample Depth Interval (ft bgs)	2,4,5-T	2,4-D	Dicamba	Pentachlorophenol	Mercury	Aluminum	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Nickel	Potassium	Thallium	Vanadium	Zinc
SCDM NCR*	(12 ogo)	700,000	200,000	NE	300,000	20,000	70,000,000	30,000	10,000,000	20,000	30,000	NE	200,000	20,000	3,000,000	50,000,000	NE	NE	10,000,000	1,000,000	NE	700	700,000	20,000,000
SCDM CR*		NE	NE	NE	1,000	NE	NE	710	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
6910-101	3-5	13	ND	ND	ND	ND	9,430,000	9,300	103,000	900	ND	2,170,000	16,000	23,800	27,300	27,500	11,100	1,830	755,000	23,600	ND	ND	33,100	36,100
6910-102	5-7	ND	ND	ND	ND	ND	5,380,000	7,400	124,000	ND	ND	2,210,000	12,200	9,700	16,400	27,900	8,800	1,600	1,940,000	20,800	ND	ND	18,000	38,100
6910-103	2-4	ND	150	ND	150	ND	9,700,000	7,900	70,100	640	5,300	2,740,000	19,300	9,400	24,400	23,600	86,200	1,780	247,000	20,200	636,000	ND	27,800	129,000
6910-104	14-16	ND	ND	ND	ND	ND	5,200,000	ND	76,100	ND	1,400	7,090,000	11,700	ND	20,000	9,950	116,000	2,970	115,000	15,000	563,000	ND	17,600	83,800
6910-105	14-16	ND	ND	21	9.4	ND	8,240,000	5,300	113,000	ND	1,400	9,230,000	32,000	8,900	34,500	21,800	199,000	4,530	235,000	26,900	ND	ND	23,600	159,000
6910-106	2-4	ND	ND	ND	66 J	140	3,560,000	4,900	72,100	ND	2,200	11,300,000	20,800	6,100	48,500	26,100	193,000	5,340	281,000	14,800	ND	ND	6,600	218,000
6910-106-FD	2-4	ND	ND	ND	28	120	3,540,000	7,300	67,800	ND	2,400	5,500,000	25,700	7,200	66,400	38,200	143,000	1,620	298,000	20,300	ND	ND	4,900	231,000
6910-107	2-4	ND	ND	ND	ND	ND	4,490,000	5,400	64,900	470	ND	ND	8,600	7,200	12,100	15,500	8,200 J	782	719,000	14,600	ND	ND	17,200	26,500
6910-108	10-12	ND	ND	ND	ND	ND	1,900,000	ND	22,100	ND	ND	ND	7,000	5,600	6,600	8,310	7,400 J	520	213,000	12,000	ND	ND	14,000	12,100
6910-109	4-6	ND	ND	ND	ND	ND	8,140,000	8,500	103,000	590	ND	14,300,000	15,300	8,500	16,600	17,800	11,500	9,360	503,000	23,200	542,000	ND	26,400	38,600
6910-110	13-15	ND	ND	ND	ND	ND	5,470,000	ND	60,300	ND	ND	48,900,000	11,600	ND	10,700	11,700	ND	26,800	298,000	10,500	ND	3,100 J	20,000	26,200
6910-111	2-4	ND	ND	ND	ND	ND	5,350,000	10,300	93,300	ND	ND	ND	13,400	18,500	13,100	15,100	11,000	1,100	1,260,000	23,500	ND	ND	23,900	27,300
6910-112	12-14	ND	ND	ND	ND	ND	8,900,000	5,600	87,200	650	ND	13,700,000	15,800	12,100	15,100	13,700	10,500	8,000	584,000	16,700	ND	ND	24,700	30,600

15

TABLE 7 (Continued)

ANALYTICAL RESULTS FROM DPT SUBSURFACE SOIL SAMPLES TANGLEFOOT LANE SITE BETTENDORF, IOWA

	Section 1						10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			284N003		Analyte	s and Resul	ts (µg/kg)		Shawe	(C)2002320								
		PCB			Pestic	ides		W. IFY		SVO	СТРН				A All				2011						
EPA Identification Number	Sample Depth Interval	Depth	Aroclor 1254	С-вис	trans-Chlordane	p,p'-DDD	p,p'-DDE	Dieldrin	Heptachlor Epoxide	bis(2-Ethylhexyl)phthalate (SVOC)	тен рво	трн око	Acetone	Benzene	2-Butanone	Chloroethane	Cyclohexane	cis-1,2-Dichloroethene	Methylcyclohexane	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	Trichloroethene	Vinyl Chloride	TPH GRO (Volatile TPH)
SCDM NCR*		1,000	20,000	30,000	NE	NE	3,000	1,000	1,000,000	NE	NE	70,000,000	300,000	40,000,000	NE	NE	20,000	NE	400,000	6,000,000	100,000,000	30,000	200,000	NE	
SCDM CR*		300	580	1,800	260,000	1,800	40	70	10,000	NE	NE	NE	11,000	NE	NE	NE	NE	NE	300,000	NE	NE	8,300	93	NE	
6910-101	3-5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	49	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
6910-102	5-7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	49	ND	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
6910-103	2-4	180	ND	ND	4.6	ND	ND	ND	ND	509,000	666,000	ND	ND	ND	ND	ND	6,700	ND	ND	1,300	ND	ND	ND	12,300	
6910-104	14-16	81	ND	ND	8.5	ND	ND	ND	ND	36,500	ND	27,000	ND	ND	ND	ND	230,000	ND	ND	33,000	ND	52,000	35,000	53,700	
6910-105	14-16	180	ND	ND	ND	ND	ND	ND	410	39,700	123,000	3,000	ND	ND	ND	ND	11,000	ND	ND	ND	ND	ND	3,000	21,800	
6910-106	2-4	890	ND	ND	ND	ND	ND	ND	12,000	231,000	591,000	3,100	ND	ND	ND	ND	ND	ND	960	470	ND	1,100	ND	ND	
6910-106-FD	2-4	1,500	2.7	6.3	7.9	ND	13	6.1	6,000	NA	NA	98	31	19	53	97	150	140	43	100	ND	50	ND	NA	
6910-107	2-4	ND	ND	ND	ND	ND	ND	ND	970	ND	ND	54	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
6910-108	10-12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
6910-109	4-6	420	ND	ND	ND	6.8	6.1	ND	1,900	ND	ND	87	ND	23	ND	ND	ND	ND	26	ND	65	100	ND	ND	
6910-110	13-15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,900	ND	ND	ND	ND	ND	ND	ND	ND	320	2,200	ND	ND	
6910-111	2-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	83	ND	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
6910-112	12-14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,400	ND	ND	ND	ND	ND	ND	ND	ND	380	460	ND	ND	

16

Notes:

Bold value indicates a concentration that exceeds an SCDM benchmark.

bgs	Below ground surface	μg/kg	Micrograms per kilogram
BHC	Benzene hexachloride	NCR	Non-cancer risk
CR	Cancer risk screening concentration	NA	Not analyzed
DDD	Dichlorodiphenyldichloroethane	ND	Not detected
DDE	Dichlorodiphenyldichloroethene	NE	Not established
DPT	Direct-push technology	ORO	Oil-range organics
DRO	Diesel-range organics	PCB	Polychlorinated biphenyls
EPA	U.S. Environmental Protection Agency	SCDM	Superfund Chemical Data Matrix
FD	Field duplicate	SVOC	Semivolatile Organic Compound
ft	Feet	TPH	Total petroleum hydrocarbons
GRO	Gasoline-range organics	2,4-D	2,4-Dichlorophenoxyacetic acid
J	Estimated value	2,4,5-T	2,4,5-Trichlorophenoxyacetic aci
MCL.	Maximum Contaminant Level		

X9025.16.0111.002

^{*} SCDM hazardous substance benchmarks for soil exposure pathway.

Analytical results from DPT subsurface soil sampling indicated detections of 46 different substances. Among these detections, exceedances of EPA SCDM benchmarks were by concentrations of the metals cobalt and thallium; aroclor 1254 (PCB); bis(2-ethylhexyl)phthalate (SVOC); and the VOCs *cis*-1,2-dichloroethene, TCE, and vinyl chloride. Estimated PCE concentrations ranged from 26 to 960 micrograms per kilogram (μg/kg); estimated TCE concentrations ranged from 50 to 52,000 μg/kg; and estimated vinyl chloride concentrations ranged from 3,000 to 35,000 μg/kg. Analytical results also indicated elevated concentrations of TPH (DRO, GRO, and ORO) in multiple samples collected within the landfill area. Overall, samples collected within the landfill and oil pit areas generally contained higher concentrations of contaminants than did samples collected within other areas at the site.

4.2 GROUNDWATER SAMPLING

On September 14-15, 2015, five groundwater samples, including one field duplicate, were collected from four temporary wells at the site (see Appendix A, Figure 4). Samples were submitted on September 17, 2015, to EPA Region 7 laboratory for VOCs, TPH, SVOCs, metals (plus mercury, total and dissolved), pesticides, PCBs, and herbicides analyses as part of ASR 6910. Analytical results were compared to EPA SCDM hazardous substance benchmarks for groundwater pathway in drinking water (EPA 2014a), and are summarized in Table 8. The complete laboratory data package for ASR 6910 is in Appendix E.

TABLE 8

ANALYTICAL RESULTS FROM DPT GROUNDWATER SAMPLES TANGLEFOOT LANE SITE BETTENDORF, IOWA

																An	alytes a	nd Resu	lts (µg/	L)														
EPA Identification Number				Metals - Dissolved							Metals - Total											SVOCs			Volatile Organic Compounds									
	Sample Depth Interval (ft bgs)	Pentachlorophenol (Herbicide)	Arsenic	Barium	Chromium	Cobalt	Manganese	Nickel	Selenium	Zinc	Arsenic	Barium	Beryllium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Selenium	Vanadium	Zinc	Bis(2-Ethylhexyl)phthalate	4-Methylphenol	Naphthalene	Chloroethane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	Toluene	Trichloroethene	1,1,2-Trichlorotrifluoroethane	Vinyl Chloride	TPH GRO (Volatile TPH)
SCDM MCL*	1.50	1	10	2,000	100	NE	NE	NE	50	NE	10	2,000	100	NE	NE	1,300	15	NE	NE	50	NE	NE	NE	NE	NE	NE	NE	7	70	1,000	5	NE	2	NE
SCDM NCR*		70	4	3,000	40	4	2,100	300	70	4,000	4	3,000	40	4	4	600	NE	2,100	300	70	100	4,000	300	1,000	300	NE	3,000	700	30	1,000	7	NE	40	NE
SCDM CR*		0.1	0.044	NE	NE	NE	NE	NE	NE	NE	0.044	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	1.5	NE	NE	NE	11	NE	NE	NE	1	NE	0.017	NE
6910-201	22-26	ND	ND	88.8	ND	ND	22.2	2.1	ND	4.4	ND	112	ND	15.7	8.9	14.6	19.8	151	20.1	ND	27.7	45.4	ND	ND	ND	ND	ND	ND	ND	ND	0.72	ND	ND	ND
6910-202	16-20	0.057	ND	103	2.0	ND	452	3.6	ND	19.7	16.7	178	ND	20.9	12.0	20.1	20.0	787	24.7	ND	26.6	72.5	9.0	9.0	2.6	84	170	ND	4,500	99	540	2,700	690	8,330
6910-203	16-20	ND	5.0	104	ND	1.2	485	1.8	ND	29.7	16.7	94.7	ND	13.4	6.0	10.7	16.4	559	9.9	ND	20.0	37.7	ND	ND	ND	ND	3.1	0.85	76	1.3	94	ND	19	293
6910-203-FD	16-20	ND	5.2	82.0	ND	1.2	502	1.9	ND	15.4	17.0	98.0	ND	14.0	6.3	11.4	15.9	575	10.5	ND	20.9	38.5	ND	ND	ND	ND	2.8	ND	58	1.3	72	ND	16	311
6910-204	14-18	ND	ND	118	ND	5.0	380	6.8	10.3	3.9	14.5	309	1.6	31.3	38.6	38.3	31.3	1,490	49.1	9.0	58.0	78.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

Bold value indicates a concentration that exceeds an SCDM benchmark.

Below ground surface bgs

CR Cancer risk screening concentration

DPT

Direct-push technology U.S. Environmental Protection Agency EPA

Field duplicate FD

Feet

GRO Gasoline-range organics

Estimated value

MCL Maximum Contaminant Level Micrograms per liter

μg/L NCR Non-cancer risk

ND Not detected NE Not established

RfD

Reference dose screening concentration Superfund Chemical Data Matrix SCDM Semivolatile organic Compound Total petroleum hydrocarbons SVOC TPH

^{*} SCDM hazardous substance benchmarks for groundwater pathway in drinking water.

Analytical results from DPT groundwater sampling indicated detections of 32 different substances. Among these detections, exceedances of EPA SCDM benchmarks were by concentrations of the metals arsenic (total and dissolved), chromium, cobalt (total and dissolved), and lead, and the VOCs 1,1-dichloroethane, 1,1-dichloroethene, *cis*-1,2-dichloroethene, TCE, and vinyl chloride. Estimated TCE concentrations ranged from 0.72 to 540 µg/L. Analytical results also indicated significant concentrations of TPH GRO in multiple samples collected within the landfill area. Overall, samples collected within the landfill area contained higher concentrations of contaminants than did samples collected within other areas at the site.

4.3 SOIL-GAS SAMPLING

On September 14-17, 2015, six soil-gas samples and one ambient air sample were collected at or near the site (see Appendix A, Figure 4). Soil-gas samples were collected from six soil borings at the site, and the ambient air sample was collected slightly upgradient of the site. Samples were submitted on September 18, 2015, to EPA Region 7 laboratory for VOC analysis as part of ASR 6910. Analytical results for soil-gas samples were compared to EPA SCDM hazardous substance benchmarks for air pathway (EPA 2014a), and are summarized in Table 9. Results from the ambient air sample are also summarized in Table 9. The complete laboratory data package for ASR 6910 is in Appendix E.

TABLE 9

ANALYTICAL RESULTS FROM DPT SOIL-GAS SAMPLES TANGLEFOOT LANE SITE BETTENDORF, IOWA

	0													Analytes	and Results (μg/m³)											
EPA Identification Number	Sample Depth Interval (ft bgs)	Acetone	Benzene	2-Butanone	Carbon Disulfide	Carbone Tetrachloride	Chloroethane	Chloroform	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	Ethyl Benzene	Heptane	Hexane	Methylene Chloride	Naphthalene	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	Trichloroethene	1,1,2- Trichlorotrifluoroethane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl Chloride	m and/or p-Xylene	o-Xylene
SCDM NAAQS/	/NESHAPS*	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
SCDM N	NCR*	31,000	30	5,000	700	100	10,000	90	NE	7	200	NE	1,000	NE	NE	600	3	40	5,000	5,000	2	NE	NE	NE	100	100	100
SCDM (CR*	NE	0.31	NE	NE	0.4	NE	0.1	1.5	0.093	NE	NE	0.97	NE	NE	90	0.071	NE	NE	NE	0.4	NE	NE	NE	0.16	NE	NE
6910-1	5.5-6.0	100	4.15	19.1	52.8	0.88	ND	41.7	ND	0.405	ND	ND	10.6	10	8.6	ND	14.3 J	3.39	35	ND	1.4	ND	35.5	8.75	ND	48.5	14.6
6910-2	3.5-4.0	ND	8,940	ND	ND	ND	110,000	ND	ND	4,850	ND	789,000	ND	79,500	268,000	ND	ND	9,490	1,330,000	ND	ND	ND	ND	ND	1,240,000	ND	ND
6910-3	3.5-4.0	ND	447	ND	ND	440	8,940	ND	2,270	243	ND	8,800	ND	5,160	35,100	ND	ND	3,660	8,780	ND	8,760	ND	ND	ND	2,350	ND	ND
6910-4	5.5-6.0	ND	2.24	ND	ND	ND	8.04	ND	ND	ND	ND	60	19.7	23.6	37.9	ND	ND	10.2	634	ND	16.7	ND	68.3	29.2	48.5	75.3	23.7
6910-5	5.5-6.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	24,400	24,600	ND	ND	ND	ND	ND	41,700	9,980	545,000	924,000	37,900	ND	ND	1,530	ND	ND
6910-6	4.5-5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	70.5	ND	6,330	3,090	1,230	ND	ND	ND	ND	ND
6910-7**	NA	24.3	1.02	3.6	ND	1.26	8.28	ND	ND	0.405	ND	67.6	ND	7.7	26.1	ND	ND	1.08	133	ND	6.45	ND	ND	ND	84.4	ND	ND

20

Notes:

Bold value indicates a soil-gas concentration that exceeds an SCDM benchmark.

Below ground surface bgs

Cancer risk screening concentration CR

DPT

Direct-push technology
U.S. Environmental Protection Agency EPA

Field duplicate FD Estimated value

μg/m³ Micrograms per cubic meter
NAAQS National Ambient Air Quality Standards
NESHAPS National Emissions Standards for Hazardous Air Pollutants

Non-cancer risk Not applicable Not detected NCR NA ND Not established NE

Superfund Chemical Data Matrix SCDM

^{*} SCDM hazardous substance benchmarks for air pathway.

^{**} Ambient air sample

Analytical results from DPT soil-gas and ambient air sampling indicated detections of 26 VOCs. Among detections in soil-gas samples, exceedances of EPA SCDM benchmarks were by concentrations of 14 VOCs including PCE/TCE and their breakdown products. In the ambient air sample, concentrations of five VOCs exceeded EPA SCDM benchmarks. Overall, samples collected within the landfill and oil pit areas contained concentrations of contaminants higher than in samples collected within other areas.

4.4 SURFACE WATER AND SEDIMENT SAMPLING

This section discusses analytical results from surface water and sediment samples collected during the PA at the site.

Surface Water

On September 16-17, 2015, three surface water samples were collected at the site (see Appendix A, Figure 4). Samples were submitted on September 18, 2015, to EPA Region 7 laboratory for VOCs, TPH, SVOCs, metals (plus mercury, total and dissolved), pesticides, PCBs, and herbicides analyses as part of ASR 6910. Analytical results were compared to EPA SCDM hazardous substance benchmarks for surface water pathway in drinking water (EPA 2014a), and are summarized in Table 10. The complete laboratory data package for ASR 6910 is in Appendix E.

TABLE 10

ANALYTICAL RESULTS FROM SURFACE WATER SAMPLES TANGLEFOOT LANE SITE BETTENDORF, IOWA

EPA Identification Number								Analyte	es and	Results	ium ium														
		Metal	s – Disso	lved				Met																	
	Dicamba (Herbicide)	Barium	Manganese	Nickel	Barium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Vanadium	Zinc	Acetone	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	TPH GRO							
SCDM MCL*	NE	2,000	NE	NE	2,000	100	NE	1,300	15	NE	NE	NE	NE	NE	70	100	2	NE							
SCDM NCR*	NE	3,000	2,100	300	3,000	40	4	600	NE	2,100	300	100	4,000	10,000	30	300	40	NE							
SCDM CR*	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE							
6910-205	ND	207	195	2.2	248	3.7	2.1	4.4	2.9	299	5.3	7.3	14.1	6.4	0.59	ND	ND	ND							
6910-206	ND	214	520	2.2	224	ND	1.0	ND	ND	532	2.3	ND	ND	ND	3.6	1.5	1.2	53.9							
6910-207	0.27	212	415	2.2	220	ND	ND	ND	ND	428	2.2	ND	ND	ND	1.9	0.66	ND	ND							

22

Notes:

Bold value indicates a concentration that exceeds an SCDM benchmark.

CR	Cancer risk screening concentration
EPA	U.S. Environmental Protection Agency
GRO	Gasoline-range organics
J	Estimated value
MCL	Maximum Contaminant Level
μg/L	Micrograms per liter
mg/L	Milligrams per liter
NCR	Non-cancer risk
ND	Not detected
NE	Not established
RfD	Reference dose screening concentration
SCDM	Superfund Chemical Data Matrix
SVOC	Semivolatile organic compound
TPH	Total petroleum hydrocarbons

^{*} SCDM hazardous substance benchmarks for surface water pathway in drinking water.

Analytical results from surface water sampling indicated detections of 18 different substances. Significant detections in surface water samples included dicamba (pesticide), *cis*-1,2-dichloroethene (VOC), *trans*-1,2-dichloroethene (VOC), vinyl chloride (VOC), and TPH GRO. None of the detections exceeded an EPA SCDM drinking water benchmark.

Sediment

On September 16-17, 2015, five sediment samples, including one field duplicate, were collected at the site (see Appendix A, Figure 3). Samples were submitted on September 18, 2015, to EPA Region 7 laboratory for VOCs, TPH, SVOCs, metals (plus mercury), pesticides, PCBs, and herbicides analyses as part of ASR 6910. Analytical results are summarized in Table 11. The complete laboratory data package for ASR 6910 is in Appendix E.

TABLE 11

ANALYTICAL RESULTS FROM SEDIMENT SAMPLES TANGLEFOOT LANE SITE BETTENDORF, IOWA

								2016/70	("Bulletin	Anal	ytes and Re	esults (µg/kg	g)						No. Record			RIE LUB	Till 235
								Metals									r de w	SVOCs		VOCs			
EPA Identification Number	Aluminum	Arsenic	Barium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Nickel	Potassium	Thallium	Vanadium	Zinc	Benzo(b)fluoranthene	Chrysene	Pyrene	Acetone	2-Butanone	Carbon Disulfide	Toluene
6910-113	8,730,000	7,100	145,000	23,800,000	15,700	7,900	18,400	17,400	14,600	6,090,000	552,000	17,700	785,000	ND	26,100	61,100	ND	ND	ND	86	17	ND	ND
6910-114	4,550,000	10,800	107,000	56,900,000	10,900	9,600	13,200	18,800	19,100	29,600,000	851,000	14,800	ND	2,900 J	23,300	32,600	ND	ND	ND	58	ND	57	ND
6910-114-FD	5,000,000	9,200	123,000	27,600,000	11,400	9,500	13,700	17,200	19,300	8,770,000	530,000	15,800	ND	ND	25,100	37,100	300	ND	420	170 J	ND	81	ND
6910-115	7,680,000	9,000	128,000	21,700,000	13,700	ND	17,100	16,300	14,100 J	10,300,000	599,000	15,900	1,110,000	ND	24,200	56,600	ND	ND	ND	180	27	ND	14
6910-116	6,080,000	7,000	103,000	10,700,000	11,800	9,200	13,600	13.900	15,700	4,880,000	688,000	14,800	579,000	ND	22,400	47,000	310	230	350	130	ND	15	ND

Notes:

SCDM has not established hazardous substance benchmarks for sediment pathway.

U.S. Environmental Protection Agency Estimated value

Micrograms per kilogram Not detected μg/kg ND

Superfund Chemical Data Matrix Semivolatile organic compound Volatile organic compound **SCDM** SVOC VOC

Analytical results from sediment sampling indicated detections of 23 different substances. Significant detections in sediment samples included the SVOCs benzo(b)fluoranthene, chrysene, and pyrene, and the VOCs acetone, 2-butanone, carbon disulfide, and toluene. EPA has not established hazardous substance benchmarks for the sediment pathway. Therefore, none of the detections exceeded an EPA SCDM benchmark.

4.5 QUALITY CONTROL

Two laboratory-supplied aqueous trip blanks, one aqueous rinsate blank, one aqueous field blank, and one air blank were collected as part of quality assurance (QA)/QC sampling during the PA at the site. Samples were submitted to EPA Region 7 laboratory for analysis as part of ASR 6910. The complete laboratory data package for ASR 6799 is in Appendix E.

Analytical results from the aqueous rinsate and trip blanks samples indicated only trace amounts of the VOCs acetone and chloroform. Acetone and chloroform were also detected in the aqueous field blank sample, in addition to trace detections of metals barium, copper, manganese, and zinc. Acetone and chloroform are common organic laboratory contaminants frequently detected during analyses of environmental media. No other detections in aqueous QA/QC samples occurred.

Analytical results from the air field blank sample indicated only trace amounts of the VOCs hexane and methylene chloride. Hexane was detected at a concentration of 1.87 micrograms per cubic meter ($\mu g/m^3$), and methylene chloride was found at 16.5 $\mu g/m^3$. No other detections of VOCs in air QA/QC samples occurred.

5.0 HAZARD RANKING SYSTEM FACTORS

This section discusses sources of contamination and various contaminant migration pathways evaluated under the HRS.

5.1 SOURCES OF CONTAMINATION

START collected soil, groundwater, soil-gas, surface water, and sediment samples within, adjacent to, and downgradient of potential source areas at the site. Contaminants were detected within all five media. Moreover, multiple substances were detected at concentrations exceeding EPA SCDM benchmarks. Some of the most significant contaminants of concern detected during PA sampling were PCE and TCE and their respective breakdown products. Analytical results suggest that foremost sources of contamination at the site likely are closely proximate to the landfill and oil pit areas (see Appendix A, Figure 2).

5.2 GROUNDWATER PATHWAY

This section discusses groundwater targets and pathway conclusions drawn from analytical results from groundwater sampling at the site. During this PA, groundwater samples were collected from four DPT temporary wells (see Appendix A, Figure 4). An observed release of metals and PCE/TCE and their breakdown products have been documented.

5.2.1 Groundwater Targets

The groundwater exposure pathway is evaluated in part by calculating the number of people served by water wells within 4 miles of the site, and determining whether these people are actually or potentially exposed to contamination associated with the site. According to the Iowa Department of Natural Resources (IDNR) registered well database, 451 private wells permitted for drinking water are within a 4-mile radius of the site (see Appendix A, Figure 7). The median population per household in Scott County is 2.44 persons, which calculates to approximately 1,101 potential drinking water targets associated with domestic wells (U.S. Census Bureau 2010). However, this does not include private wells within 4 miles of the site not registered with the State. The source of municipal water in Bettendorf is the Mississippi River (American Water 2015).

5.2.2 Groundwater Pathway Conclusions

The groundwater pathway appears to pose a potentially significant threat to public health as a result of a documented release at the site of hazardous substances to groundwater, including metals and PCE/TCE and

their breakdown products. Considering the number of wells within a 4-mile radius of the site, drinking water targets impacted by the site could be numerous. Moreover, the extent of groundwater contamination associated with the site is unknown.

5.3 SURFACE WATER PATHWAY

This section discusses surface water targets and pathway conclusions drawn from analytical results from surface water sampling at the site. During this PA, surface water samples were collected from a creek downgradient of contamination source areas (see Appendix A, Figure 2). Samples indicated several significant detections of contaminants including metals and VOCs. Surface water from this creek eventually discharges into the Mississippi River.

5.3.1 Surface Water Targets

Surface water exposure is evaluated in part by calculating the number of people served by surface water intakes downstream of the site, and determining whether these people are actually or potentially exposed to hazardous substances. The source of municipal water in Bettendorf is the Mississippi River (American Water 2015). Intakes for drinking water are known to exist downriver from the site. Additional targets appear to be livestock and aquatic life inhabiting the areas around drainage runoff ditches and ponds downgradient of contamination source areas.

5.3.2 Surface Water Pathway Conclusions

Three surface water samples were collected from the creek running east along the southern boundary of the site. Several significant detections of contaminants occurred in surface water samples, but the concentrations were low enough that no EPA SCDM benchmarks were exceeded. The source of municipal water in Bettendorf is the Mississippi River, and intakes for drinking water are known to exist downriver from the site. However, it is highly unlikely that contamination at the site has impacted drinking water due to the relatively low concentrations found in surface water and sediment, the distance to the intakes, and the large volume of water associated with the Mississippi River. Therefore, the surface water pathway does not appear to pose a threat to public health.

5.4 SOIL AND SEDIMENT EXPOSURE

This section discusses soil and sediment targets and pathway conclusions drawn from analytical results from soil/sediment sampling at the site. During this PA, soil samples were collected from six soil borings (see

Appendix A, Figure 3), and sediment samples were collected from the creek running east along the southern boundary of the site (see Appendix A, Figure 6). Significant detections of multiple contaminants occurred in samples from both media.

5.4.1 Soil and Sediment Exposure Targets

The soil and sediment exposure pathway would pose risk from contamination within areas where people live or work. Therefore, the only potential targets appear to be those people residing or working near the site.

5.4.2 Soil and Sediment Pathway Conclusions

Thirteen soil samples and five sediment samples were collected at the site. Significant detections of multiple contaminants occurred in samples from both media. Therefore, soil and sediment pathways appear to pose a threat to the public health of those who reside or work near the site.

5.5 AIR PATHWAY

This section discusses air targets and pathway conclusions drawn from analytical results from soil-gas/ambient air sampling at the site. As part of the PA, six soil-gas and one ambient air samples were collected (see Appendix A, Figure 5). Samples indicated significant detections of contaminants including PCE/TCE and their breakdown products.

5.5.1 Air Pathway Targets

Approximately 50,457 people reside within a 4-mile radius of the site (U.S. Census Bureau 2010).

5.5.2 Air Pathway Conclusions

The air pathway of HRS addresses outdoor air only. Based on abundance of VOC contamination already documented at the site and high density of people who reside/work near the site, potential for exposure to contamination via the air pathway is significant.

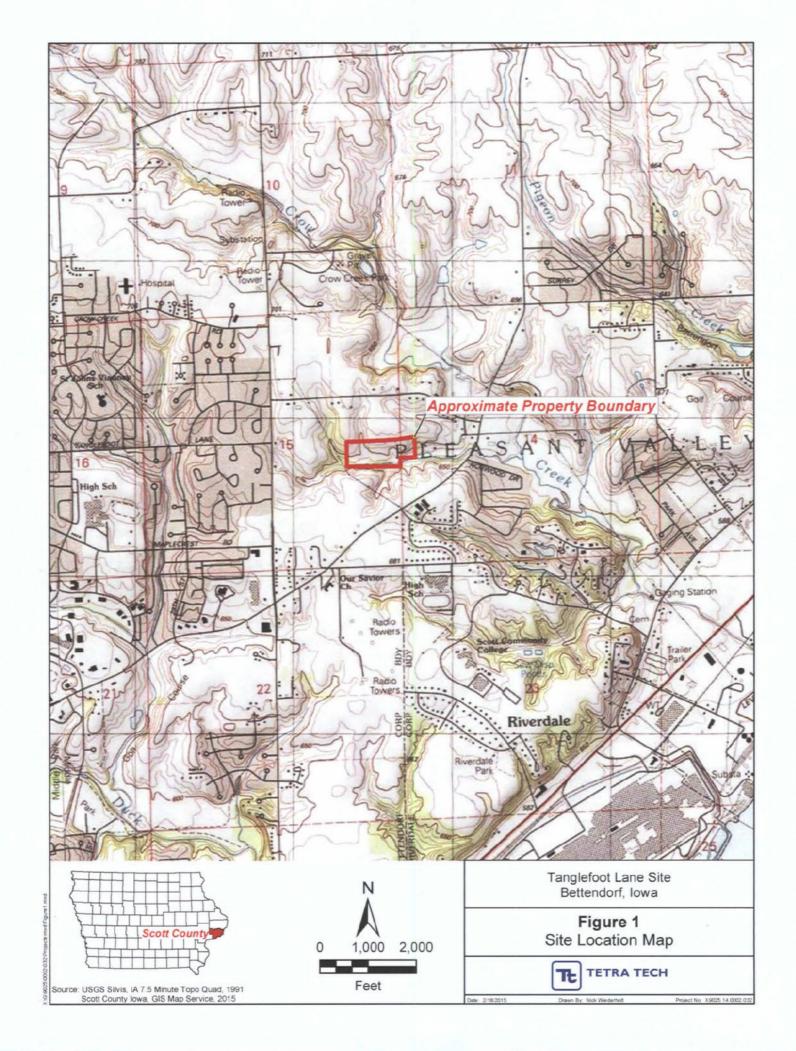
6.0 EMERGENCY RESPONSE CONSIDERATIONS

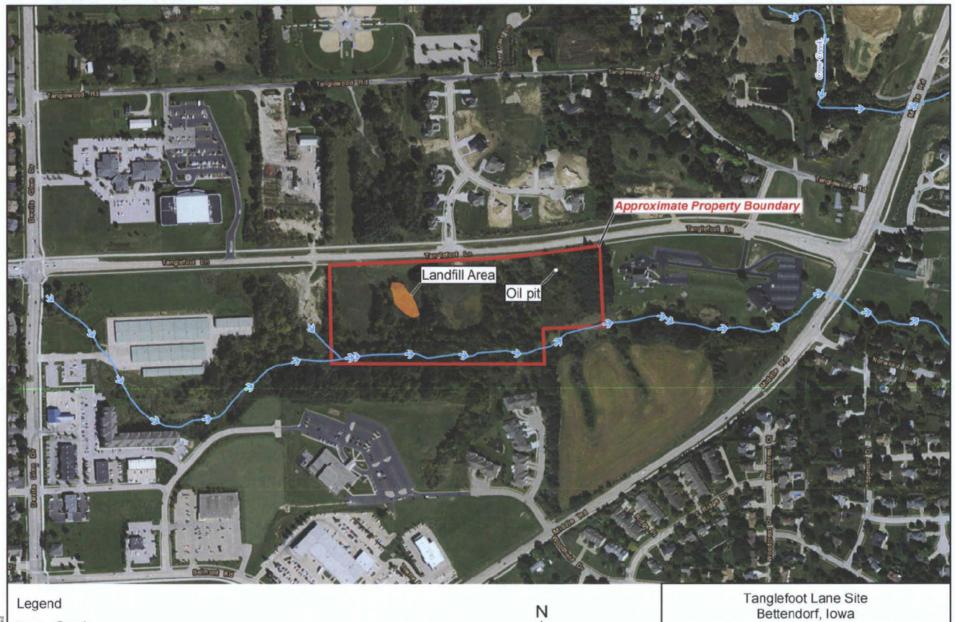
The National Contingency Plan [40 Code of Federal Regulations 300.415(b)(2)] authorizes EPA to consider emergency response actions at those sites that pose an imminent threat to human health or the environment. Based on data obtained during this PA, a referral to EPA Region 7 for emergency response activities does not appear necessary at this time. Indoor air and subslab vapor sampling should be performed at nearby residences to determine if removal actions may be warranted.

7.0 SUMMARY

The EPA Region 7 Superfund Division tasked Tetra Tech to conduct a PA at the site in Bettendorf, Iowa. The PA was in response to discovery of contaminants at the site. The purpose of this investigation was to evaluate whether any threats to human health or the environment exist as a result of any contamination associated with the site.

As part of the PA, 13 soil, 5 groundwater, 3 surface water, and 5 sediment samples were collected at the site and submitted for VOCs, TPH, SVOCs, metals (plus mercury), pesticides, PCBs, and herbicides analyses. In addition, 6 soil-gas and 1 ambient air samples were collected for VOCs. Numerous detections of contaminants occurred in samples from all of these media, including PCE/TCE and their breakdown products. Main sources of contamination are likely near the landfill and oil pit areas of the site where disposal of various substances is known to have occurred. The extent of contamination at the site remains unknown. Therefore, its impact on human health or the environment is also unknown.


The pertinent HRS factors associated with the site are as follows:


- Detections of contaminants occurred in samples collected within all media sampled during the PA.
- The extent of contamination associated with the site is unknown.
- The air pathway addressed by HRS is the ambient (outdoor air) only.
- Observed releases to groundwater and surface water migration pathways have been documented, although no targets have been sampled.

8.0 REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR). 1997. Toxicological Profile for Tetrachloroethene. Accessed January 18, 2012. http://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=264&tid=48
- ATSDR. 2003. Toxicological Profile for Trichloroethylene. July.
- American Water. 2015. Water Quality. Accessed on December 18, 2015. http://www.amwater.com/iaaw/about-us/iaaw-faqs.html
- EnviroNET, Inc. (EnviroNET). 2012. Phase I Environmental Site Assessment Former Meinert Farm. July.
- U.S. Environmental Protection Agency (EPA). 2014a. Superfund Chemical Data Matrix (SCDM) Table. Washington, D.C. January.
- EPA. 2014b. Polychlorinated Biphenyls Basic Information. Accessed on December 18, 2015. http://www3.epa.gov/epawaste/hazard/tsd/pcbs/pubs/about.htm
- Mable/Geocorr Geographic Correspondence Engine Output (Geocorr). 2012. Accessed on December 18, 2015. http://mcdc2.missouri.edu/websas/geocorr2k.html
- Meister Publishing Company. 1980. Farm Chemicals Handbook. Willoughby, Ohio.
- Tetra Tech, Inc. (Tetra Tech). 2015. Quality Assurance Project Plan (QAPP) for Tanglefoot Lane Site. July 13.
- U.S. Census Bureau. 2010. Quickfacts. Accessed on December 18, 2015. http://quickfacts.census.gov/qfd/

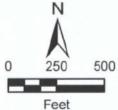
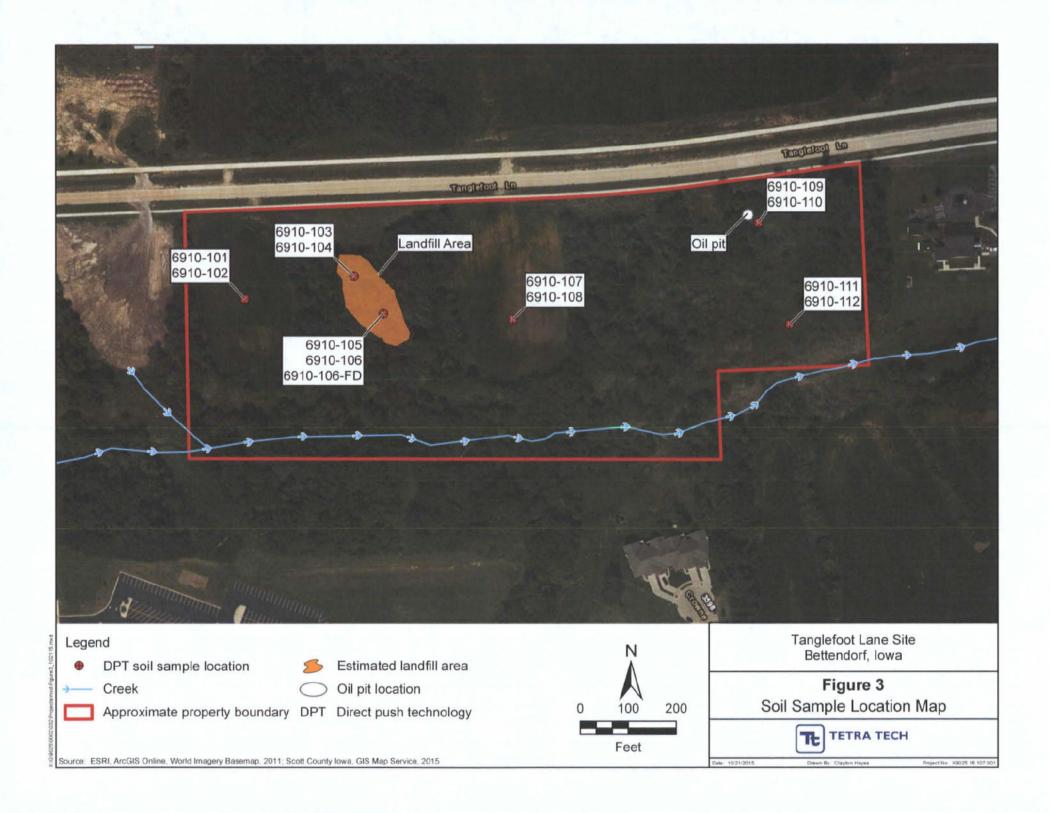
APPENDIX A FIGURES

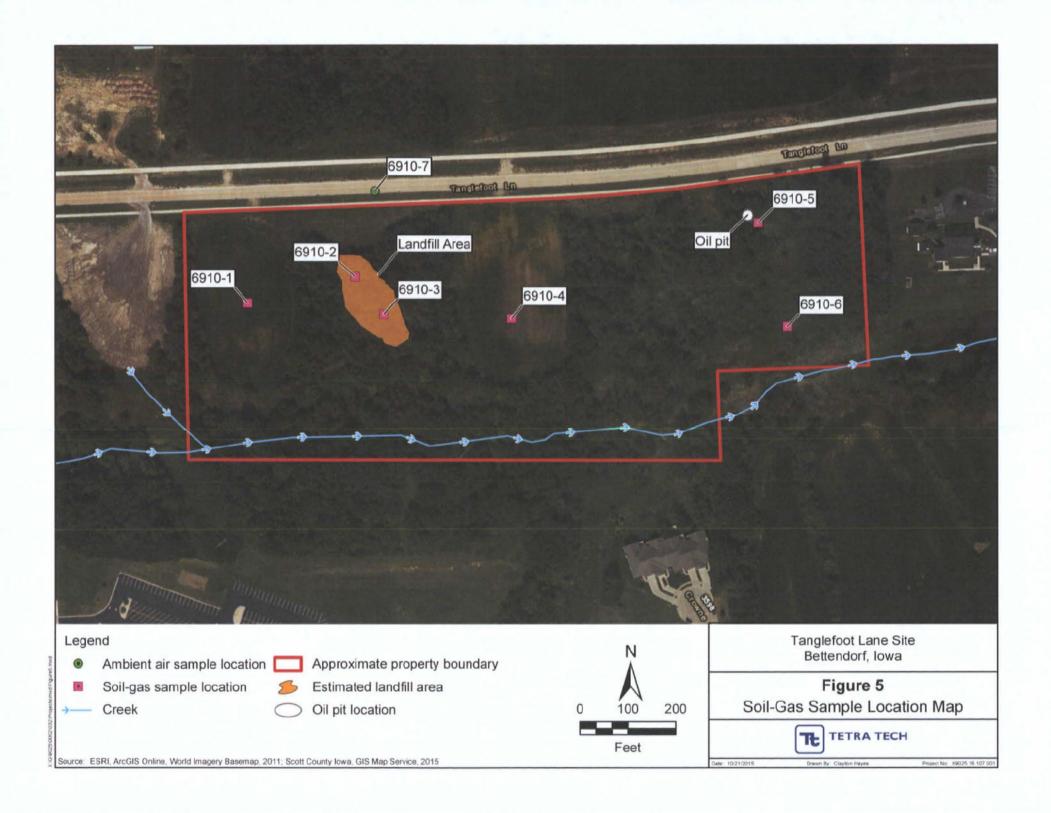
- Creek

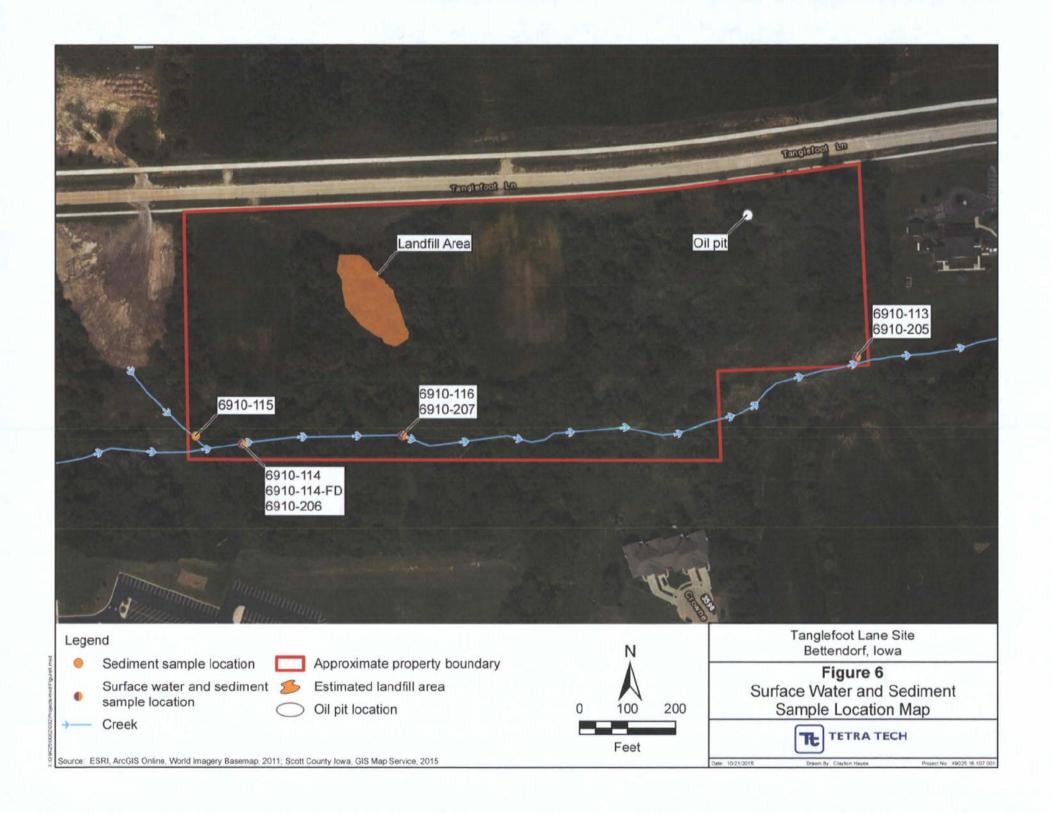
Approximate property boundary

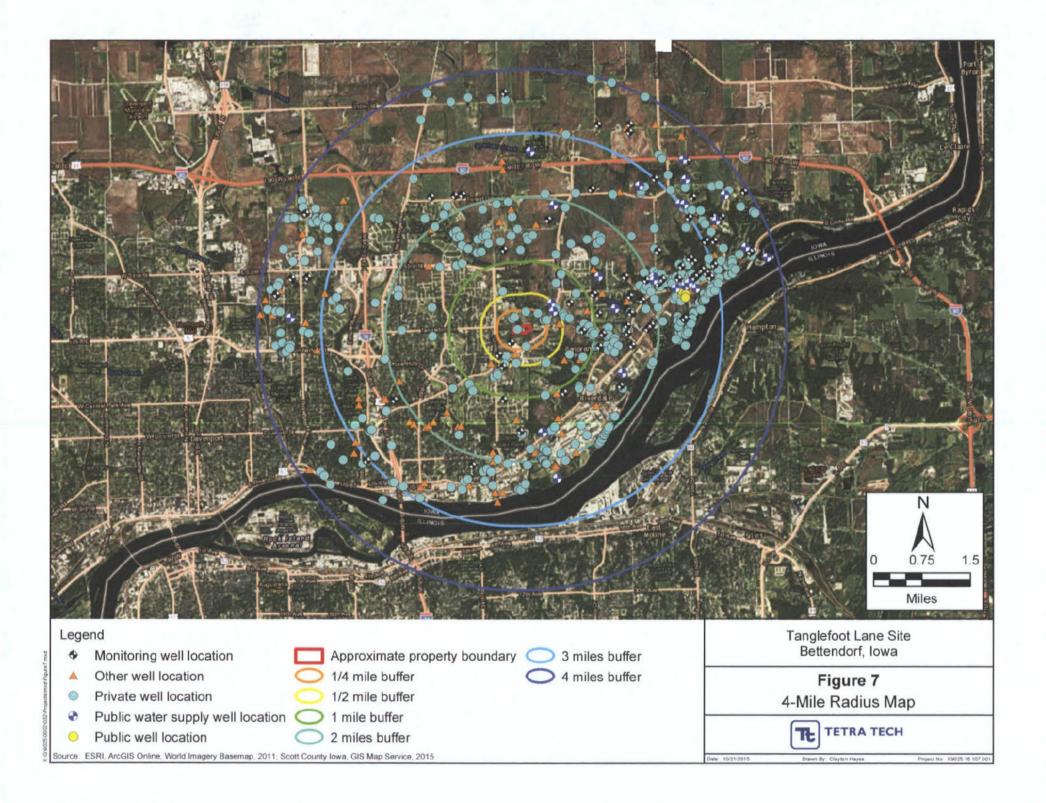
Estimated landfill area

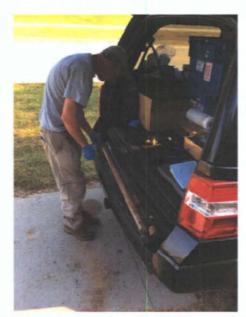
Oil pit location

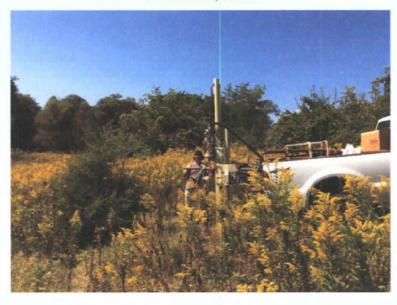



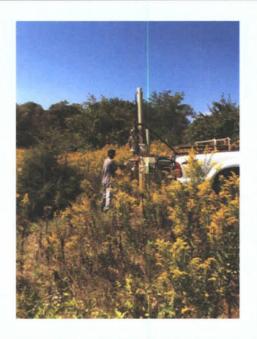

Figure 2 Site Layout Map



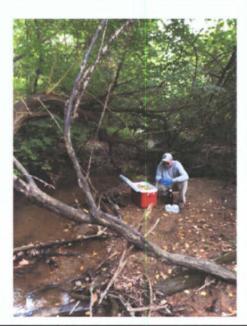

Source: ESRI, ArcGIS Online, World Imagery Basemap, 2011; Scott County Iowa, GIS Map Service, 2015




APPENDIX B PHOTOGRAPHIC LOG


TETRA TECH PROJECT NO.	PHOTO DESCRIPTION	This photograph shows subsurface soil sampling activities at the Tanglefoot Lane site.	1
X9025.16.0111.002	CLIENT	U. S. Environmental Protection Agency Region 7	Date
Direction: North PHOTOGRAPHER		Adam Watkins	9/14/2015

TETRA TECH PROJECT NO.	PHOTO DESCRIPTION	This photograph shows subsurface soil sampling activities at the Tanglefoot Lane site.	2
X9025.16.0111.002 CLIENT		U. S. Environmental Protection Agency Region 7	Date
Direction: North	PHOTOGRAPHER	Adam Watkins	9/14/2015


TETRA TECH PROJECT NO.	PHOTO DESCRIPTION	This photograph shows subsurface soil sampling activities at the Tanglefoot Lane site.	3
X9025.16.0111.002	CLIENT	U. S. Environmental Protection Agency Region 7	Date
Direction: West PHOTOGRAPHER		Adam Watkins	9/15/2015

TETRA TECH PROJECT NO.	PHOTO DESCRIPTION	This photograph shows groundwater sampling activities at the Tanglefoot Lane site.	4
X9025.16.0111.002	CLIENT	U. S. Environmental Protection Agency Region 7	Date
Direction: West	PHOTOGRAPHER	Adam Watkins	9/15/2015

TETRA TECH PROJECT NO.	PHOTO DESCRIPTION	This photograph shows rinsate blank sampling activities at the Tanglefoot Lane site.	5
X9025.16.0111.002	CLIENT	U. S. Environmental Protection Agency Region 7	Date
Direction: East	PHOTOGRAPHER	Adam Watkins	9/16/2015

TETRA TECH PROJECT NO.	PHOTO DESCRIPTION	This photograph shows surface water and sediment sampling activities at the Tanglefoot Lane site.	6	
X9025.16.0111.002	CLIENT	U. S. Environmental Protection Agency Region 7	Date	
Direction: West PHOTOGRAPHER		Adam Watkins	9/17/2015	

TETRA TECH PROJECT NO.	PHOTO DESCRIPTION	This photograph shows debris scattered throughout a drainage ditch that leads to a creek running along the southern boundary of the Tanglefoot Lane site.	7
X9025.16.0111.002	CLIENT	U. S. Environmental Protection Agency Region 7	Date
Direction: Northwest	PHOTOGRAPHER	Adam Watkins	9/17/2015

TETRA TECH PROJECT NO.	PHOTO DESCRIPTION	This photograph shows the lack of water in the creek running along the southern boundary of the Tanglefoot Lane site.	8
X9025.16.0111.002	CLIENT	U. S. Environmental Protection Agency Region 7	Date
Direction: East	PHOTOGRAPHER	Adam Watkins	9/17/2015

APPENDIX C FIELD LOGBOOK

All components of this product are recyclable

- Rite in the Rain

A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather.

Using a pencil or all-weather pen Rite in the Rain ensures that your notes survive the rigors of the field, regardless of the conditions.

JL DARLING LLC Tacoms, WA 98424-1017 USA www.RiteintheRain.com

Item No. 311 NSN: 7530-01-433-5654 ISBN: 978-1-932149-29-8

Made in the USA US Pat No. 6,863,940

302 311

TANGLEGOT LANE 9025 N 0002,082

Name TETRATECH

ATTN: ADAM WATKINS

Address 415 CAK STREET

KANSAS CITT, MO 64106

Phone 816-412-1741

Project TANGLE FOOT LANE
X9025.14.0002.032
BETTENDORF, TA

CONTENTS

PAGE	REFERENCE	DATE
		-
-		
-		

9-16-2015 9-15-2015 0000 ARRIVE ONSITE & COMPACT 1340 COLLECTED 6910-3 MORNING SAFETY TAIL GATE MEETING. 1445 BREAK FOR LANGLY. 0830 MOVE TO DPT-5 SAMPLE LOCATION ARRIVE @ PPT-4 SAMPLE LOCATION 1528 THE PID IS STILL NOT OPERATING 1610 COLLECTED 6910-107 DUE TO CHALGING ISSUES. 1625 COLLECTED 6910-108 1040 COLLECTED 6910-109 1650 COLLE CTED 6910.4. 1160 COLLECTED 6910-110 1500 COLLECTED 6910-204 1125 COLLECTED 6910 . 5 IBIG DEPART SITE. WATCHS & BROWN 1130 NO GROWNOWATER BY COUNTERED. RETURN TO MOTEL TO PRES SAMPLES MOVE TO 6910" DPT-6 SAMPLE TO BE DELIVERED TO EPA LAS. LOCATION. 1228 COLLECTED 6910 · 111 TO 1240 COLLECTED 6910-112 1349 COLLECTED 6910-6 NO GROUNDWATER ENCOUNTERSD 1424 COLLECTED 6910-212. 1460 MOVE TO HOTEL TO LOAD UP WATER SAMPLES COLLECTED ON MONDAY & THESDAY SO THAT THEY CAN BE DELLUCRED TO EPA TOMORROW MORNING. 1530 QUAN DO PEPARTS DAVENBORT, IA. WATEINS & BROWN TAKE LUNCH. ILOO APRIVE @ LINDA LYON'S Rite in the Rain.

TO PICK UP HER SIGNED ACCESS AGREEMENT. ARRIVE @ ANNE SCHOOLER'S HOUSE TO PICK WE HER SIGNED ACCESS AGREEMENT. ARRIVE @ SURFACE WATER SECIMENT - 4 SAMPLE LOCATION. WATELLY STRAKES W/ ADTACENT PROPERTY OWNER COLLECTED 6910-205 COLLECTED 6916-113 DEPART SITE.

9-17-2015	y
0830	WATERNS & BROWN ARRIVE OUT ITE
	C SURFACE WATER EEDMENT -1
	SAMPLE LOCATION.
0410	COLLECTED 6910- 206
0924	COLLECTED 6910-114.
0924	COLLECTED 6910-114-FD
[100	MOVE TO SURFACE WATER
	SECIMENT-Z SAMPLE LOCATION.
1135	COLLECTED 6910-115. (MS/MSD)
	NO SURFACE WATER ENCOUNTERED
The state of the s	ALONG CREEK LEADING TROM
And the state of t	PROPERTY TO THE WEST OF THE SITE.
1250	ARRIVE @ SURFACE WATER
	SECIMENT - 3 SAMPLE LOCATION.
1350	COLLECTED 6910-207 (MS(MFD)
	COLLECTED 6910-116
	— · · · · · · · · · · · · · · · · · · ·
1430	
1430	COLLECTED 6910-7

				,		1	
BREAK FOR LUNCH.							1
DEPART BETTEN DORF, IA.				1	1		<u> </u>
COLLECT 6910-210-FB (TRY	P BLANK)		·				!
		,	i				;
					y 1,		
					!		
			~		<u> </u>	i ·	!
					1	i	
					i i	<u> </u>	
		-]	
	the same of the sa						-
					1	1	i
					<u> </u>		
					[
					!	1	
			-				1
					1		
					!		1
					i		
		. !			,	i	
			,		-		
	,						•
1		'		•	:		

.

APPENDIX D FIELD SHEETS AND CHAIN-OF-CUSTODY RECORDS

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

ACTIVITY LEADER(P						DATE OF COLLECTION SHEET					
TODO DAV	-		TAN	GLEFO	OT LA	M	E				DAY MONTH YEAR Of
CONTENTS OF SHIP	MENT										
SAMPLE		TYPE	OF CONTAIN	UDA SET (4	VOA SET	SAMPLED MEDIA					RECEIVING LABORATORY REMARKS-OTHER INFORMATION
NUMBER	CUBITAINER	BOTTLE	BOTTLE	BOTHE	(2 VIALS EA)	water	Soil	sedment	dust	Olline	(condition of samples upon receipt other sample numbers, etc.)
6910-201			AINERS PER S	AMPLE NUMBER	R	*	N	N	6		
	2	3	Sangle 1			1				_	AUTON SELECTION
6910-202	2	3		1	1	X					THE POST CONTRACTOR OF THE PARTY OF THE PART
6910-203	2	3		1	1	X					
6910 - 203-FD	2	3		1	1	X					half-ward-balk attenuational
6910-204	2	3		1	1	X					
6910-213-FB				200	101	X					- MA-TID WO VORSO AUGUSTA
		S BOY HE ST		Legin							1907 - Lauren Courte
95 8		176/18	Track	COLUMN TO A STATE OF THE PARTY							Chest the administration
	45					-			-		
	- '	P			-	+		-		_	
		N				-					
			100	1	P. U. D.						Disciplination in the second
				04	R	1,				_	MILE AND THE PROPERTY OF THE
				149	YZ	V					
				t	E TOTAL	4	<				Marine Supplemental Street Street Street
					Y	1	7	-			By at 2016 In the County of the 1929
			les and							9	
			in a leading								30,
	way pure.	NEW Y			WATE OF						3
						1	-				
						1					
				-	-	+	-	-	-	-	1
					-	+	1			-	4
DECORUPTION	UDA4517			-	MODE OF SH	LDM	EALT	_	_		
DESCRIPTION OF SI	HIPMENI				WODE OF SH	IIPM	ENI	_	_	-	
PIECE(S) C	ONSISTING OF	F	_ BOX(ES)		COMM		AL (CAR	RIEF	۹_	
ICE CHEST	(S): OTHER _			_	COURI SAMPL		ONY	VEY	ED		(SHIPPING DOCUMENT NUMBER)
PERSONNEL CUSTO	UN BECORD						-			-	(SHIFFING DOCUMENT NOMBER)
RELINQUISHED BY		TO SHOW THE RESIDENCE OF SHOWING	TIME	RECI	EIVED BY	-	-	-	-	-	REASON FOR CHANGE OF CUSTODY
SEALEDAN D	UNSEAL	9.17	7.15 9:	32	EALED S	F	UN	ISE	A1 F	-0	Reidatlas
RELINQUISHED BY		DATE	TIM		EIVED BY						REASON FOR CHANGE OF CUSTODY
SEALED	UNSEAL				ALED		u	VSE	AL	ED	
RELINQUISHED BY		DATE	TIMI	REC	EIVED BY						REASON FOR CHANGE OF CUSTODY
SEALED	UNSEAL	ED		SE	ALED		U	NSE	AL	ED	

ASR Number: 6910	Sample Number:	201	QC Co	de: Mai	trix: Water	Tag ID: 6910-201
Project ID: THE			Pro	ject Manage	r: Todd Davi	
City: Bet	glefoot Lane Site tendorf perfund			State	e: Iowa	4.
Site Name: Mul				·	Site ID:	07ZZ Site OU: 00
Location Desc: Gy	sample DPT-1	, 22'	-261	865		
	1	Extern	al Samp	ole Number:		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude: <u>યા.</u>	560113 '	Sam	ple Coll	ection: Start	: <u>9/14/19</u>	1 4 :36
Longitude: 🗝	.444432			End	: _/_/_	
Laboratory Analys	es: Preservative	Holdin	g Time	Analysis		
/1 - 1 Liter plastic bottle	5 mL of HNO3/L to pH<2	28	Days	1 Mercury in W	/ater	
1 - 1 Liter plastic bottle	Field Filtered, HNO3 to pH<2	180	Days	1 Metals - Diss	olved, in Water	by ICP/MS
1 - 1 Liter plastic bottle	Field Filtered, HNO3 to pH<2, 4 Deg C	28	Days	1 Mercury - Dis	ssolved, in Wate	er
1 - 1 Liter plastic bottle	HNO3 to pH<2	180	Days	1 Metals in Wa	ter by ICP/MS	4
1 - 128oz amber glass	4 Deg C	7	Days	1 Semi-Volatile	Organic Comp	ounds in Water
1 - 128oz amber glass	4 Deg C	7	Days	1 Pesticides in	Water by GC/E	С
1 - 128oz amber glass	4 Deg C	7	Days	1 Herbicides in	Water by GC/E	:C
1 139es ambar alam	4 Deg C	7	Days	1 Semi-Volatile	TPH (DRO & C	RO) in Water by GC/FID
1 - 128oz amber glass	4 Deg C					
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 VOCs in Wat	er by GC/MS for	r Low Detection Limits

Sample Comments:

(N/A)

Sample Collected By: TT

ASR Number: 691	O Sample Number:	202	QC Co	de: Matr	ix: Water Tag	ID : 6910-202
Project ID: TH	DTLPA		Pro	ject Manager	Todd Davis	
-	nglefoot Lane Site itendorf nerfund			State	: Iowa	
	lti-Site - General				Site ID: 07Z	Z Site OU: 00
Location Desc: GV	V sample DPT-2	ن ا ر	'- ZG '	B65	······································	
	i	Extern	al Samp	ole Number: _		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude: <u>41</u>	. 560224 ·	Sam	ple Coll	ection: Start:	9/15/15	10:30
Longitude: <u> </u>	0 .476 STS ·			End:		_;_
Laboratory Analys	ses:					-
Container	Preservative	Holding	g Time	Analysis		
1 - 1 Liter plastic bottle	5 mL of HNO3/L to pH<2	28	Days	1 Mercury in Wa	ter	
1 - 1 Liter plastic bottle	Field Filtered, HNO3 to pH<2	180	Days	1 Metals - Disso	ived, in Water by I	CP/MS
1 - 1 Liter plastic bottle	Field Filtered, HNO3 to pH<2, 4 Deg C	28	Days	1 Mercury - Diss	olved, in Water	
1 - 1 Liter plastic bottle	HNO3 to pH<2	180	Days	1 Metals in Wate	er by ICP/MS	
1 - 128oz amber glass	4 Deg C	7	Days	1 Semi-Volatile	Organic Compound	s in Water '
1 - 128oz amber glass	4 Deg C	7	Days	1 Pesticides in V	later by GC/EC	
1 - 128oz amber glass	4 Deg C	7	Days	1 Herbicides in V	Water by GC/EC	
1 - 128oz amber glass	4 Deg C	7	Days	1 Semi-Volatile	TPH (DRO & ORO)	n Water by GC/FID
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 VOCs in Water	by GC/MS for Low	Detection Limits
2 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 Volatile TPH in	Water by GC/MS	
Sample Comments	:					

Sample Collected By: ↑↑

(N/A)

Project ID: THE			Pro	ject Manager:	Todd Davis	
City: Bet	nglefoot Lane Site tendorf			State:	Iowa	
Program: Sup Site Name: Mul	perfund Iti-Site - General				Site ID: 07	7ZZ Site OU: 00
Location Desc: GV	V sample DeT-	3; 1	6°-20	' 565		
		Externa	al Samp	ole Number: _		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude: 41	. 560005.	Samı	ole Coll	ection: Start:	9 /15/15	13:08
		•		· ·		
Longitude: 🜱	<u>5,44638</u> 6			End:		;
		···		End:		:
Longitude: **** Laboratory Analys Container		Holding	y Time	End:		:
Laboratory Analys	ses:	Holding 28	y Time Days			_:
Laboratory Analys Container - 1 Liter plastic bottle	Ses: Preservative 5 mL of HNO3/L to pH<2 Field Filtered, HNO3 to	-		Analysis	ter	
Laboratory Analys Container 1 - 1 Liter plastic bottle 1 - 1 Liter plastic bottle	Preservative 5 mL of HNO3/L to pH<2 Field Filtered, HNO3 to pH<2 Field Filtered, HNO3 to	28	Days	Analysis 1 Mercury in Wa	ter ved, in Water by	
Laboratory Analys Container 1 - 1 Liter plastic bottle 1 - 1 Liter plastic bottle 1 - 1 Liter plastic bottle	Preservative 5 mL of HNO3/L to pH<2 Field Filtered, HNO3 to pH<2	28 180	Days Days	Analysis 1 Mercury in Wa 1 Metals - Dissol	ter Ived, in Water by Olved, in Water	
Laboratory Analys Container 1 - 1 Liter plastic bottle	Preservative 5 mL of HNO3/L to pH<2 Field Filtered, HNO3 to pH<2 Field Filtered, HNO3 to pH<2 Field Filtered, HNO3 to pH<2, 4 Deg C	28 180 28	Days Days Days	Analysis 1 Mercury in Wa 1 Metals - Dissol 1 Mercury - Diss	ter ved, in Water by olved, in Water er by ICP/MS	/ ICP/MŞ
Container 1 - 1 Liter plastic bottle 1 - 1280z amber glass	Preservative 5 mL of HNO3/L to pH<2 Field Filtered, HNO3 to pH<2 Field Filtered, HNO3 to pH<2 Field Filtered, HNO3 to pH<2, 4 Deg C HNO3 to pH<2	28 180 28 180	Days Days Days Days	Analysis 1 Mercury in Wa 1 Metals - Dissol 1 Mercury - Diss 1 Metals in Wate	ter lved, in Water by olved, in Water er by ICP/MS Organic Compou	/ ICP/MŞ
Laboratory Analys Container - 1 Liter plastic bottle - 1280z amber glass - 1280z amber glass	Preservative 5 mL of HNO3/L to pH<2 Field Filtered, HNO3 to pH<2 Field Filtered, HNO3 to pH<2 Field Filtered, HNO3 to pH<2, 4 Deg C HNO3 to pH<2 4 Deg C	28 180 28 180 7	Days Days Days Days Days	Analysis 1 Mercury in Wa 1 Metals - Dissol 1 Mercury - Diss 1 Metals in Wate 1 Semi-Volatile	ter Ived, in Water by olved, in Water or by ICP/MS Organic Compou Jater by GC/EC	/ ICP/MŞ
Laboratory Analys Container - 1 Liter plastic bottle - 1280z amber glass - 1280z amber glass	Preservative 5 mL of HNO3/L to pH<2 Field Filtered, HNO3 to pH<2 Field Filtered, HNO3 to pH<2 Field Filtered, HNO3 to pH<2, 4 Deg C HNO3 to pH<2 4 Deg C 4 Deg C	28 180 28 180 7	Days Days Days Days Days Days	Analysis 1 Mercury in Wa 1 Metals - Dissol 1 Mercury - Diss 1 Metals in Wate 1 Semi-Volatile (1 Pesticides in Wate 1 Herbicides in Wate	ter Ived, in Water by olved, in Water or by ICP/MS Organic Compou Vater by GC/EC Vater by GC/EC	/ ICP/MŞ
Laboratory Analys	Preservative 5 mL of HNO3/L to pH<2 Field Filtered, HNO3 to pH<2 Field Filtered, HNO3 to pH<2, 4 Deg C HNO3 to pH<2 4 Deg C 4 Deg C 4 Deg C	28 180 28 180 7 7	Days Days Days Days Days Days Days	Analysis 1 Mercury in Wa 1 Metals - Dissol 1 Mercury - Diss 1 Metals in Wate 1 Semi-Volatile in Wate 1 Pesticides in Wate 1 Herbicides in Wate 1 Semi-Volatile	ter lved, in Water by olved, in Water er by ICP/MS Organic Compou /ater by GC/EC Vater by GC/EC	/ ICP/MŞ nds in Water

Sample Comments:

(N/A)

Sample Collected By: TT

Project ID: THE			Pro	ject Ma	anager:	Todd Davis	
	iglefoot Lane Site tendorf				State:	Iowa	
Site Name: Mul						Site ID: 07Z	Z Site OU: 00
Location Desc: GV	V sample DeT-	3 ;	l6'-20	' 56	5		
	1	Extern	al Samp	le Nun	nber: _		
Expected Conc:	(or Circle One:	Low	Medium	High)		Date	Time(24 hr)
Latitude: 41,	560005	Sam	pie Coli	ection:	Start:	9/15/15	13:08
Longitude: 📆	0 <u>82074.</u>				End:	_/_/_	:_
Laboratory Analys	es:					·	
Container	Preservative	Holdin	g Time	Analy	sis		
- 1 Liter plastic bottle	5 mL of HNO3/L to pH<2	28	Days	1 Merc	ury in Wat	ter	
- 1 Liter plastic bottle	Field Filtered, HNO3 to	180	Days	1 Meta	ls - Dissol	ved, in Water by I	CP/MŞ
- 1 Liter plastic bottle	pH<2 Field Filtered, HNO3 to pH<2, 4 Deg C	28	Days	1 Merc	ury - Disso	olved, in Water	
- 1 Liter plastic bottle	HNO3 to pH<2	180	Days	1 Meta	is in Wate	r by ICP/MS	
- 128oz amber glass	4 Deg C	7	Days	1 Semi	-Volatile (Organic Compound	s in Water
- 128oz amber glass	4 Deg C	7	Days	1 Pesti	cides in W	ater by GC/EC	
- 128oz amber glass	4 Deg C	7	Days	1 Herb	icides in W	Vater by GC/EC	
- 128oz amber glass	4 Deg C	7	Days	1 Semi	-Volatile 1	TPH (DRO & ORO)	in Water by GC/FID
	4 Deg C, HCL to pH<2	14	Days	1 VOCs	in Water	by GC/MS for Low	Detection Limits
- 40mL VOA vial						Water by GC/MS	

Sample Collected By: TT

6910-203

ASR Number: 6	910 Sample Number:	204	QC CO	de: M	l atrix: Wate	r Tag.	ID: 6910-204
•	THOTLPA		Pro	ject Mana	jer: Todd Da	ivis	
City: 1	Tanglefoot Lane Site Bettendorf Superfund			Sta	ate: Iowa		
_	Multi-Site - General				Site ID	: 07ZZ	Site OU: 00
Location Desc:	GW sample DPT-4	; 14	- 18 B	6 5			
	•			ole Number	·		4.
Expected Conc:	(or Circle One:	Low	Medium	High)	Date		Time(24 hr)
Latitude:	41.559954	Sam	pie Coll	ection: Sta	rt: <u>9/15</u> /	15	14.00
Longitude:	-40 . 445463			Er	nd:/_/		_:_
Laboratory Ana	lyses:			*			· · ·
Container	Preservative	Holdir	ng Time	Analysis			
1 - 1 Liter plastic bottl	e 5 mL of HNO3/L to pH<2	28	Days	1 Mercury Ir	Water		
1 - 1 Liter plastic botti	e Field Filtered, HNO3 to pH<2	180	Days	1 Metals - D	issolved, in Wa	ter by ICP	/MS
1 - 1 Liter plastic bottl	P	28	Days	1 Mercury -	Dissolved, in W	ater	
1 - 1 Liter plastic bottl		180	Days	1 Metals in 1	Water by ICP/MS	S	
1 - 128oz amber glass	4 Deg C	. 7	Days	1 Semi-Vola	tile Organic Cor	npounds i	n Water
1 - 128oz amber glass	4 Deg C	7	Days	1 Pesticides	in Water by GC	/EC	
1 - 128oz amber giass	4 Deg C	7	Days	1 Herbicides	in Water by GO	Z/EC	
1 - 128oz amber glass	4 Deg C	7	Days	1 Semi-Vola	tile TPH (DRO 8	ORO) in	Water by GC/FID
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 VOCs in W	ater by GC/MS	for Low D	etection Limits
2 - 40mL VOA viai	4 Deg C, HCL to pH<2	14	Days	1 Volatile Tr	H in Water by C	GC/MS	4.

Sample Comments:

(N/A)

Sample Collected By: TT

ASR Number:	6910 Sample Number:	213	QC Co	de: FB Ma	trix: Water	Tag 1	(D: 6910-213-FB			
_	THOTLPA	Project Manager: Todd Davis								
City:	Tanglefoot Lane Site Bettendorf			Stat	e: Iowa					
Program: Site Name:	Superfund Multi-Site - General				Site ID:	07ZZ	Site OU: 00			
Location Desc:	TVOA & TPH GRO Trip BI	ank sar	nple							
		Extern	al Şamı	ple Number:						
Expected Conc	(or Circle One:	Low	Medium	High)	Date		Time(24 hr)			
Latitude:		Sam	ple Coll	ection: Start	: 1/15/1	<u>\$</u>	10:50			
Longitude:				End	: _/_/_					
Laboratory An	alyses:									
Container	Preservative	Holdin	g Time	Analysis						
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days		er by GC/MS fo		etection Limits			
2 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 Volatile TPH	in Water by GC	/MS				
Sample Comme	ents:		······································		 					

(N/A)

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

TODD D	rint)			OF SURVEY	DATE OF COLLECTION SHEET				
CONTENTS OF SHIPE			1.174	14000	1001	- 1140	-	DAY MONTH YEAR	
				ERS (4VOA	5)		D MEDIA	RECEIVING LABORATORY	
SAMPLE NUMBER	CUBITAINER	BOTTLE	BOTTLE	BOFTE	VOA SET (2 VIALS EA)	ler 	dust O 1 of 40		
	NUMB	ERS OF CONTA	INERS PER SA	AMPLE NUMBE	R	water	Ogns Ogns	olher sample numbers etc)	
6916-1			1				X		
6910-2			1				X		
6910.3			1				X	Total Company of the	
6910.4		Class	1				X	Sibe sub-mixt community	
6910-5			- †				X		
6910-6			1		a a a a a a a a a a a a a a a a a a a		X	BUILDING Seed nebased.	
6910-7			1	mark who	-		×		
6910-9			1				×		
6910-101		4		1	1	X		Talling Harriston	
6910-102		4		1	341	X		White Park	
6910.183		4	Unu	-	1	X		Lincollegial	
6910-104		4				X			
6910-105		4		1	100	X		(Opposite Contractor)	
6910-106		4		1		X			
6910-106-FE		4		1	1	X			
6910.107		4		1	1	X		ARTINI CIETA DE MANTE	
6910-108		4		1	1	X		The state of the s	
6910-109		4		}	1	X			
6910-110		4		t	1	X			
6910-111		4		1	1	X			
6910-112		4		1	1	X			
6910-113		4		1	1	X			
6910-114		4		1	1	X			
6910-114-FC		4			1	X			
DESCRIPTION OF SH	HIPMENT				MODE OF SHI	PMENT			
PIECE(S) CO	ONSISTING OF		BOX(ES)		COMME	RCIAL CA	RRIER _		
ICE CHEST(COURIE	R ER CONVE	VED				
					SAMPLE	EN CUIVE	TEU	(SHIPPING DOCUMENT NUMBER)	
PERSONNEL CUSTO			TIME	REC	EIVED BY	-		REASON FOR CHANGE OF CUSTODY	
(A)			DWin	yan	_	Reidatlob			
SEALED	UNSEALE	The second second		1 31	EALED	UNS	EALED		
RELINQUISHED BY		DATE	TIME	REC	EIVED BY			REASON FOR CHANGE OF CUSTODY	
SEALED	UNSEALI	ED		SEALED UNSEALED					
RELINQUISHED BY		DATE	TIME	REC	EIVED BY			REASON FOR CHANGE OF CUSTODY	
TSEALED	UNSEAL	ED		SE	EALED	UN	SEALED	d	

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

CONTENTS OF SHIPMENT	TODD DE						OR ACTIVITY		N	E			DATE OF COLLECTION SHEET
SAMPLE					1/114		1001			_			DAY MONTH YEAR 2 0 2
NUMBER Commercial Commerci		FLA	55 T				The second second	S	AMP				
Commercial Carrier Course Commercial Carrier Course Cour	NUMBER	CUBLTATNER	BOFFLE	BOT	TLE B	OFFICE		water	sou	sediment	dust	othe	(condition of samples upon receipt
COMMERCIAL CARRIER COUNTER COU	6910-115		12			3	3		X				Charles Hall Control of
6910 - 206 3 2 1 1 X	6910-116		4			1	1		X				Insperied 1980
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) COMMERCIAL CARRIER COUNTER PERSONNEL CUSTODY RECORD THE LINQUISHED BY SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY	6910 - 205	3		Z		}	1	X					Charles emperor
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF ICE CHESTIS): OTHER DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF SEALED UNSEALED UNSEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY	6910-206	3		2		1	1	X					BEAT THE WORLD DIMENSION TO THE
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF SIGE CHESTIS; OTHER DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF SIGE CHESTIS; OTHER DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY	6916-207	9		6	,	3	3	X					
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) COMMERCIAL CARRIER COUNTIER SAMPLER CONVEYED (SHIPPING DOCUMENT NUMBER) PERSONNEL CUSTODY RECORD RELINGUISHED BY (SAMPLER) OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINGUISHED BY REASON FOR CHANGE OF CUSTODY REASON FOR CHANGE OF CUSTODY RELINGUISHED BY REASON FOR CHANGE OF CUSTODY RELINGUISH BY REASON FOR CHANG	6910-210-FB					1	1	X					A T SA LONS V RODE, TO,
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) COMMERCIAL CARRIER COURIER SAMPLER CONVEYED FRESONNEL CUSTODY RECORD FIELINGUISHED BY COUNTRICATION RECEIVED BY REASON FOR CHANGE OF CUSTODY	6910.211-FB	3		2	2	1		X	-				
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) ICE CHEST(S): OTHER PERSONNEL CUSTODY RECORD RELINQUISHED BY CAMPLER) SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY	6910-212	3	Date	2	Lef	1	1	X				in	The second transfer
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) ICE CHEST(S): OTHER PERSONNEL CUSTODY RECORD RELINQUISHED BY GAMPLER) SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY	_												
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) ICE CHEST(S): OTHER PERSONNEL CUSTODY RECORD RELINQUISHED BY GAMPLER) SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY			I SALDI			- 100							
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) ICE CHEST(S): OTHER PERSONNEL CUSTODY RECORD HELINGUISHED BY (SAMPLER) SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY													
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) ICE CHEST(S): OTHER PERSONNEL CUSTODY RECORD RELINQUISHED BY CAMPLER) SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY													Laboratory profunds I
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) ICE CHEST(S): OTHER PERSONNEL CUSTODY RECORD RELINQUISHED BY CAMPLER) SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY							1000						1900
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) ICE CHEST(S): OTHER PERSONNEL CUSTODY RECORD HELINGUISHED BY (SAMPLER) SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY						1							
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) ICE CHEST(S): OTHER PERSONNEL CUSTODY RECORD HELINGUISHED BY (SAMPLER) SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY					1		0						
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) ICE CHEST(S): OTHER PERSONNEL CUSTODY RECORD HELINGUISHED BY (SAMPLER) SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY					75		1						
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) ICE CHEST(S): OTHER PERSONNEL CUSTODY RECORD HELINGUISHED BY (SAMPLER) SEALED UNSEALED UNSEALED OATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY						4	100	1					
DESCRIPTION OF SHIPMENT PIECE(S) CONSISTING OF BOX(ES) CCOMMERCIAL CARRIER COURSIER SAMPLER CONVEYED PERSONNEL CUSTODY RECORD RELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY							Pont	V	7				E-Margarette
DESCRIPTION OF SHIPMENT — PIECE(S) CONSISTING OF BOX(ES) — ICE CHEST(S): OTHER COURIER — SAMPLER CONVEYED (SHIPPING DOCUMENT NUMBER) PERSONNEL CUSTODY RECORD RELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY						1 1		0	2		200	7	
PIECE(S) CONSISTING OF BOX(ES) COMMERCIAL CARRIER COURIER SAMPLER CONVEYED (SHIPPING DOCUMENT NUMBER) PERSONNEL CUSTODY RECORD RELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY									8	7	-		2
PIECE(S) CONSISTING OF BOX(ES) COMMERCIAL CARRIER COURIER SAMPLER CONVEYED (SHIPPING DOCUMENT NUMBER) PERSONNEL CUSTODY RECORD RELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY													
PIECE(S) CONSISTING OF BOX(ES) COMMERCIAL CARRIER COURIER SAMPLER CONVEYED (SHIPPING DOCUMENT NUMBER) PERSONNEL CUSTODY RECORD RELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY													
PIECE(S) CONSISTING OF BOX(ES) COMMERCIAL CARRIER COURIER SAMPLER CONVEYED (SHIPPING DOCUMENT NUMBER) PERSONNEL CUSTODY RECORD RELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY REASON FOR CHANGE OF CUSTODY													
PIECE(S) CONSISTING OF BOX(ES) COMMERCIAL CARRIER COURIER SAMPLER CONVEYED (SHIPPING DOCUMENT NUMBER) PERSONNEL CUSTODY RECORD RELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY REASON FOR CHANGE OF CUSTODY													3
COURIER SAMPLER CONVEYED (SHIPPING DOCUMENT NUMBER) PERSONNEL CUSTODY RECORD RELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY	DESCRIPTION OF SI	HIPMENT					MODE OF SH	IPM	ENT				
COURIER SAMPLER CONVEYED SEALED SEALED CHIPPING DOCUMENT NUMBER) (SHIPPING DOCUMENT NUMBER) (SHIPPING DOCUMENT NUMBER) RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY REASON FOR CHANGE OF CUSTODY	PIECE(S) C	ONSISTING O	F	BO	((ES)		СОММ	ERCI	AL C	CAR	RIE	R _	
PERSONNEL CUSTODY RECORD RELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY RELINQUISHED BY REASON FOR CHANGE OF CUSTODY	~							Total Control					
RELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY							SAMPL	EH C	INU	VEY	ŧυ	-	(SHIPPING DOCUMENT NUMBER)
SEALED UNSEALED 9/18/15 1100 SEALED UNSEALED REASON FOR CHANGE OF CUSTOD	THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAME	THE RESERVE OF THE PERSON NAMED IN	Contract Street, Married Street	ATE	TIME	REC	EIVED BY	-			towards.	-	REASON FOR CHANGE OF CUSTODY
RELINQUISHED BY DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTOD	DR	, Jr EEN					ROW	Gg.	an	-	-		
		UNSEAL	-		-			0	UN	SE	AL	EO	
DISEALED UNSEALED UNSEALED	RELINQUISHED BY		DA	ATE	TIME	HEC	EIVED BY						REASON FOR CHANGE OF CUSTODY
January Comments of the Commen	SEALED								U	NSE	AL	ED	
RELINQUISHED BY DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTOD	RELINQUISHED BY		Di	ATE	TIME	REC	CEIVED BY						REASON FOR CHANGE OF CUSTODY
SEALED UNSEALED SEALED UNSEALED	TSEALED.	UNSEAL	EDF			Ts	EALED		U	NSE	AL	ED	П

ASR Number:	6910 Sample Number:	1 QC	Code: M	l atrix: Air	Tag ID; 6910-1
Project ID:		İ	Project Manag	ger: Todd Dav	vis
City:	Tanglefoot Lane Site Bettendorf Superfund		Sta	ate: Iowa	
_	Multi-Site - General			Site ID:	07ZZ Site OU: 00
Location Desc:	DPT-1; 5.5		ტ ട mple Number	:	
Expected Conc	(or Circle One:	Low Medi	um High)	, Date	" ' Time(24 hr)
Latitude:	41. 566092'	Sample C	ollection: Sta	rt: 9 14/L	5 (<u>\$.:40</u>
Longitude:	-10.447405		En	id: 1/14/1	15 18:42
Laboratory Ar	•				
Container	Preservative	Holding Time	e Analysis		

1 VOCs in Air at Ambient Levels by GC/MS

Sample Comments:

None

1 - 6 Liter Canister

(N/A)

PRESSURE: START: -28 PE:

STOR: -5 PE:

A 7495

Sample Collected By: TT

ASR Number:	6910 Sample Number:	2	QC Cod	e:	Matri	i x: Air	Tag I	ID: 6910-2	
Project ID:		Project Manager: Todd Davis							
City:	Tanglefoot Lane Site Bettendorf				State:	Iowa			
Program: Site Name:	Superfund Multi-Site - General					Site ID:	07ZZ	Site OU: 00	
Location Desc:	DPT-2 ; 4 3	5'-4	,o' B	65	-			<u>•</u>	
	E	Externa	l Sampi	le Numb	er: _				
Expected Conc	: (or Circle One:	Low M	ledium	High)		Date		Time(24 hr)	
Latitude:	41.560224	Samp	le Colle	ction: S	tart:	9/15/19	<u> </u>	<u>(1 :31</u>	
Longitude:	-90.476585				End:	9/15/1	5	11:33	
Laboratory An	-								
Container 1 - 6 Liter Canister	Preservative None	Holding 60	Time Days	Analysi 1 VOCs i		Ambient Leve	els by G	C/MS	
Sample Commo	ents:								
(N/A)									

.1

PRESCURE: FTART: -30 pt.

CAN # : 2986

ASR Number:	6910 Sample Numb	er: 3	QC Co	de: Matr	ix: Air	Tag 1	D: 6910-3
Project ID:	THDTLPA		Pro	ject Manager:	Todd Davi	s	
City:	Tanglefoot Lane Site Bettendorf			State:	Iowa		
Program: Site Name:	Multi-Site - General				Site ID:	07ŻZ	Site OU: 00
Location Desc:	DPT-3; 3.	5'-46'	B G-S				
		Extern	al Samp	ole Number: _			
Expected Conc	(or Circle O	ne: Low	Medium	High)	Date		Time(24 hr)
Latitude:	41.560005.	Sam	ple Coli	ection: Start:	9/15/15	<u>:</u>	13:40
Longitude:	- <u>90,446373</u> 1			End:	9 /15/15	_	<u>15:43</u>
Laboratory An	_						•
Container	Preservative	Holdin	ig Time	Analysis			
1 - 6 Liter Canister	None	. 60	Days	1 VOCs in Air at	Ambient Leve	s by G	C/MS
Sample Comme	ents:						
(11.1-)							

(N/A)

CAN #: L 5 111

PRESSURE: START: -30 PA:

ASR Number: 6910 Sample Number: 4 QC Code: ___ **Matrix:** Air Tag ID: 6910-4-_

Project ID: THDTLPA

Project Manager: Todd Davis

Project Desc: Tanglefoot Lane Site

City: Bettendorf

State: Iowa

Program: Superfund

Site Name: Multi-Site - General

Site ID: 07ZZ Site OU: 00

5.5'-6.0' 565 DET- 4: Location Desc:

External Sample Number:

Expected Conc:

(or Circle One: Low Medium High)

Date

Time(24 hr)

Latitude: 41. 559957.

Sample Collection: Start: 9 /15/15

16:50

Longitude: -90.445403

End: 9/15/15

6:53

Laboratory Analyses:

Container

Preservative

Holding Time

Analysis

1 - 6 Liter Canister

None

60 Days

1 VOCs in Air at Ambient Levels by GC/MS

Sample Comments:

(N/A)

CAN #: L5201

PRESSURE: START: -29 pm:

ASR Number: 6910 Sample Number: 5 QC Code: __ Matrix: Air Tag ID: 6910-5-__

Project ID: THDTLPA

Project Manager: Todd Davis

Project Desc: Tanglefoot Lane Site

City: Bettendorf

State: Iowa

Program: Superfund

Site Name: Multi-Site - General

Site ID: 07ZZ Site OU: 00

5.5'-6' BGS DPT-5; Location Desc:

External Sample Number:

Expected Conc:

(or Circle One: Low Medium High)

Date

Time(24 hr)

Latitude: 닉1.566석62'

Sample Collection: Start:

9/16/15

11:25

Longitude: "90.443504"

End: 9/16/15

11:27

Laboratory Analyses:

Container

Preservative

Holding Time

Analysis

1 - 6 Liter Canister

None

60 Days 1 VOCs in Air at Ambient Levels by GC/MS

Sample Comments:

(N/A)

CAN # : L5108

PRESSURE: START: -28 ps:

5 top : - 5 ps:

ASR Number: 6910

Sample Number: 6

QC Code: ___

Matrix: Air

Tag ID: 6910-6-

Project ID: THDTLPA

Project Manager: Todd Davis

Project Desc: Tanglefoot Lane Site

State: Iowa

City: Bettendorf

Program: Superfund

Site Name: Multi-Site - General

Site ID: 07ZZ Site OU: 00

Location Desc: DPT-6; 4.5-5.6 B65

External Sample Number: _

Expected Conc:

(or Circle One: Low Medium High)

Date

Time(24 hr)

Latitude: 41.559867

Sample Collection: Start:

9/16/15

13:49

Longitude: *10.443303*

9/14/15 End:

13:51

Laboratory Analyses:

Container

Preservative

Holding Time

1 - 6 Liter Canister

None

Days

1 VOCs in Air at Ambient Levels by GC/MS

Sample Comments:

(N/A)

CAN # : L 5197

PRESSURE: START: -29 ps:

STOP . - 5 05:

ASR Number: 6910 Sample Number: 7

QC Code: __

Matrix: Air

Tag ID: 6910-7-___

Project ID: THDTLPA

Project Manager: Todd Davis

Project Desc: Tanglefoot Lane Site

City: Bettendorf

State: Iowa

Program: Superfund

Site Name: Multi-Site - General

Site ID: 07ZZ Site OU: 00

Location Desc: AMBIENT AIR -

External Sample Number:

Date

Time(24 hr)

Expected Conc:

(or Circle One: Low Medium High)

Latitude: 41.560769

Sample Collection: Start: 1/17/15

Longitude: -90.446415

9/14/15 End:

14 : 33

Laboratory Analyses:

Container

Preservative

Holding Time

Analysis

1 - 6 Liter Canister

None

60 Days

1 VOCs in Air at Ambient Levels by GC/MS

Sample Comments:

(N/A)

CAN #:

PRESSURE:

ASR Number:	6910 Sa	mple Number:	: 9	OC CO	de;	Matr	ix: Air	Tag I	D: 6910-9
Project ID:				Pro	ject Mana	ager:	Todd Davi	S	
-	Bettendorf Superfund	•			s	tate:	Iowa		
Site Name:	•						Site ID:	07 <u>2</u> Z	Site OU: 00
Location Desc:	F15	LD BLAN	K						
	-		Extern	al Samp	ole Numbe	er: _		 	
Expected Conc	:	(or Circle One:	Low	Medium	High)		Date		Time(24 hr)
Latitude:			Sam	ple Coll	ection: Si	tart:	9/17/15	•	14:50
Longitude:	 -				1	End:	//		<u> </u>
Laboratory Ar	•								
Container	Prese	rvative	Holdir	ıg Time	Analysis				
1 - 6 Liter Canister	None		60	Days	1 VOCs In	Air at	Ambient Leve	is by GC	/MS
Sample Comm	ents:	M1 .12 8	,			-			
(N/A)			<u>.</u>						
•		CAN #	F :	3016	A				

Project ID: THDTLPA Project Manager: Todd Dav Project Desc: Tanglefoot Lane Site City: Bettendorf Program: Superfund Site Name: Multi-Site - General Site ID: Location Desc: DPT-1; 3'-5' &&-5 External Sample Number: Expected Conc: (or Circle One: Low Medium High) Date Latitude: 41.5601(3' Sample Collection: Start: 4 / 14 / 15 / 15 / 15 / 15 / 15 / 15 /	Tag ID: 6910-101
City: Bettendorf Program: Superfund Site Name: Multi-Site - General External Sample Number: Expected Conc: (or Circle One: Low Medium High) Latitude: 41.54013' Sample Collection: Start: 4/14/4 Longitude: 40.444432' Laboratory Analyses: Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels Purge-and-Trap 1 - 8 oz glass 4 Deg C 180 Days 1 Mercury In Soil or Sediment 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Component	is
Program: Superfund Site Name: Multi-Site - General Site ID: Location Desc: DPT-1; 3'-5' &&5 External Sample Number: Expected Conc: (or Circle One: Low Medium High) Date Latitude: 41.56013' Sample Collection: Start: 4/4/5 Longitude: 90.474432' End: /_/ Laboratory Analyses: Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury in Soil or Sediment 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	
Site Name: Multi-Site - General Location Desc: DPT-1; 3'-5' 86-5 External Sample Number: Expected Conc: (or Circle One: Low Medium High) Latitude: 4!.54013' Longitude: 90.444432' Sample Collection: Start: 9/4/4 Laboratory Analyses: Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury In Soil or Sediment 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	
External Sample Number: Expected Conc: (or Circle One: Low Medium High) Date Latitude: 41.54013' Sample Collection: Start: 4/14/3' Longitude: 40.444432' End: /// Laboratory Analyses: Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury in Soil or Sediment 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	
Expected Conc: (or Circle One: Low Medium High) Latitude: 41.56013' Sample Collection: Start: 4/4/15 Longitude: 90.444432' End: Laboratory Analyses: Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium VOA 5035) bisulfate (in 2 vials) 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury in Soil or Sediment 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	07ZZ Site OU: 00
Expected Conc: (or Circle One: Low Medium High) Latitude: 41.54013' Sample Collection: Start: 4/4/3 Longitude: 96.471432' End: // Laboratory Analyses: Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury In Soil or Sediment 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	
Latitude: 41.54013' Sample Collection: Start: 9/14/13 Longitude: 96.434432' End: /_/ Laboratory Analyses: Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury in Soil or Sediment 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	·
Laboratory Analyses: Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels VOA 5035) bisulfate (in 2 vials) Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury in Soil or Sediment 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	Time(24 hr)
Laboratory Analyses: Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury In Soil or Sediment 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	5 4 <u>7:00</u>
Container Preservative Holding Time Analysis 2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium VOA 5035) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 6 7 5 6	
2 - 40mL VOA vial 4 Deg C 14 Days 1 Volatile TPH in Soil by GC/M 4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium bisulfate (in 2 vials) 14 Days 1 VOC's in Soil at Low Levels Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury in Soil or Sediment 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	
4 - 40mL VOA vials (soil 4 Deg C, H2O + sodium 14 Days 1 VOC's in Soil at Low Levels Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury in Soil or Sediment 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	
VOA 5035) bisulfate (in 2 vials) Purge-and-Trap 1 - 8 oz glass 4 Deg C 28 Days 1 Mercury in Soil or Sediment 1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	S
1 - 8 oz glass 4 Deg C 180 Days 1 Metals in Solids by ICP-AES 1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	
1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile Organic Comp	
1 - 8 oz glass 4 Deg C 14 Days 1 Pesticides in Soil by GC/EC	ounds in Soil
1 - 8 oz glass 4 Deg C 14 Days 1 Herbicides In Soil by GC/EC	
1 - 8 oz glass 4 Deg C 14 Days 1 Semi-Volatile TPH (DRO & C	RO) in Soil by GC/FID
0 - 4 Deg C 0 Days 1 Percent Solid	

Sample Comments:

(N/A)

						2-1	
-	IDTLPA		Pro	ject Mana	ger: Todd Dav	/is	•
City: Be	inglefoot Lane Site ettendorf iperfund			St	ate: Iowa		
_	ulti-Site - General				Site ID:	07ZZ	Site OU: 00
Location Desc: _	DPT-1; 5'-7	1 56	\$				
	1	Externa	ai Samp	le Numbe	r:		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date		Time(24 hr)
Latitude: 💃	11.566(13	Sam	ple Colic	ection: Sta	ort: 9/14/1	<u>5</u>	17:15
Latitude: <u> </u>	_	Samı	ple Colic		ort: <u>9 /14/1</u> nd://_		<u>:</u> :
Longitude:	90.477432						
Longitude:	90.477432	Samı					
Longitude:	90 . 식구권(12 ' yses: Preservative 4 Deg C			E: Analysis			
Laboratory Analy Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035)	yses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials)	Holding 14 14	g Time Days Days	Analysis 1 Volatile T 1 VOC's in S Purge-and	PH in Soil by GC/I Soil at Low Levels	MS by GC/M	:
Longitude:	yses: Preservative 4 Deg C 1 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C	Holding 14 14 28	g Time Days Days Days	Analysis 1 Volatile T 1 VOC's in S Purge-and 1 Mercury in	PH in Soil by GC/N Soil at Low Levels d-Trap n Soil or Sedimen	MS by GC/M	:
Laboratory Analy Container 2 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass 1 - 8 oz glass	yses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C 4 Deg C	Holding 14 14	g Time Days Days	Analysis 1 Volatile T 1 VOC's in S Purge-and 1 Mercury is 1 Metals in	PH in Soil by GC/I Soil at Low Levels d-Trap n Soil or Sediment Sollds by ICP-AES	MS by GC/M t	IS Closed-System
Laboratory Analy Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass 1 - 8 oz glass 1 - 8 oz glass	yses: Preservative 4 Deg C 1 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C	Holding 14 14 28	g Time Days Days Days	Analysis 1 Volatile T 1 VOC's in S Purge-and 1 Mercury is 1 Metals in	PH in Soil by GC/N Soil at Low Levels d-Trap n Soil or Sedimen	MS by GC/M t	IS Closed-System
Laboratory Analy Container 2 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass 1 - 8 oz glass	yses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C 4 Deg C	Holding 14 14 28 180	Days Days Days Days Days	Analysis 1 Volatile T 1 VOC's in s Purge-and 1 Mercury in 1 Metals in 1 Semi-Vola	PH in Soil by GC/I Soil at Low Levels d-Trap n Soil or Sediment Sollds by ICP-AES	MS by GC/M t S pounds i	IS Closed-System
Laboratory Analy Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass 1 - 8 oz glass 1 - 8 oz glass	yses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C 4 Deg C 4 Deg C 4 Deg C	Holding 14 14 28 180 14	Days Days Days Days Days Days Days	Analysis 1 Volatile T 1 VOC's in S Purge-and 1 Mercury in 1 Metals in 1 Semi-Vola 1 Pesticides	PH in Soil by GC/N Soil at Low Levels d-Trap n Soil or Sediment Solids by ICP-AES atile Organic Com	MS by GC/M t S pounds i	IS Closed-System
Longitude:	yses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C	Holding 14 14 28 180 14	Days Days Days Days Days Days Days Days	Analysis 1 Volatile T 1 VOC's in S Purge-and Mercury in Metals in Semi-Vola Pesticides Herbicide	PH in Soil by GC/N Soil at Low Levels d-Trap n Soil or Sediment Solids by ICP-AES atile Organic Comp	MS by GC/M t s pounds i	IS Closed-System

Sample Collected By: TT

ASR Number: 6910) Sample Number:	103	QC Coc	le: Matr	ix: Solid	Tag ID: 6910-103
Project ID: THE			Pro	ject Manager:	: Todd Dav	ris
-	glefoot Lane Site tendorf serfund			State	: Iowa	
Site Name: Mul					Site ID:	07ZZ Site OU: 00
Location Desc:	PT-Z; Z'-4	' 5৫	. 5			
		Extern	al Samp	le Number:		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr
Latitude: 41.	560224	Sam	ple Coli	ection: Start:	9/15/1	<u>5 09:45</u>
Longitude: ~90	2. 446593°			End:	_/_/_	_ :
Laboratory Analys	ses:					
Container	Preservative	Holding	g Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days	1 Volatile TPH in	Soil by GC/1	MS
4 - 40mL VOA vials (soil VOA 5035)	4 Deg C, H2O + sodium bisulfate (in 2 vials)	14	Days	1 VOC's in Soil a Purge-and-Tra		by GC/M5 Closed-System
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soi	l or Sediment	t
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	s by ICP-AES	;
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile	Organic Com	pounds in Soil
1 - 8 oz glass	4 Deg C	14	Days	1 Pesticides in S	oil by GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 Herbicides In S	Soil by GC/EC	:
- v vz g.445	4 Deg C	14	Days	1 Semi-Volatile	TPH (DRO & C	ORO) in Soil by GC/FID
1 - 8 oz glass	4 DCG C					

ASR Number: 69	10 Sample Number:	104	QC Co	de: Matı	ix: Solid	Tag ID: 6910-104
Project ID: The			Pro	ject Manager	Todd Dav	ris
=	anglefoot Lane Site ettendorf uperfund			State	: Iowa	
-	ulti-Site - General				Site ID:	07ZZ Site OU: 00
Location Desc:	DPT-2; 14'-	الحا!	BGS		 	
	• 1	Extern	al Samp	ole Number:		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude: 실	11.560224	Sam	ple Coll	ection: Start:	9/15/1	5 10:16
Longitude:	<u> </u>		•	End:	_/_/_	
Laboratory Anal	yses:	. v-	······································			
Container	Preservative	Holdin	g Time	Analysis		
2 - 40mL VOA vla!	4 Deg C	14	Days	1 Volatile TPH in	Soil by GC/N	1S *
4 - 40mL VOA vials (soi VOA 5035)	bisulfate (în 2 vials)	14	Days	Purge-and-Tra	ıp .	by GC/MS Closcu-System
1 - 8 oz glass	4 Deġ C	28	Days	1 Mercury in Soi		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	•	
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile	Organic Com	oounds in Soil
1 - 8 oz glass	4 Deg C	14	Days	1 Pesticides in S	oil by GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 Herbicides in S	Soil by GC/EC	•
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile	TPH (DRO & 0	ORO) in Soil by GC/FID
0 -	4 Deg C	0	Days	1 Percent Solid		
Sample Comment	:S:					

ASR Number: 6910							
Project ID: THE			Pro	ject Manage	r: Todd Dav	vis	
	glefoot Lane Site endorf erfund			Stat	e: Iowa		
Site Name: Muli					Site ID:	07ZZ	Site OU: 00
Location Desc:	PT-3; 14	-161	B <i>G5</i>				
		Externa	l Samp	le Number:			
Expected Conc:	(or Circle One:	Low N	/edium	High)	Date		Time(24 hr)
Expected Conc.	(or chice one.	LOW I	icaiaiii	1119117	Date		111110(27 111)
Latitude: 41.				ection: Start		5	12:10
•	{6000¢,				:: <u>9/15/1</u>		
Latitude: 41.	56006.			ection: Start	:: <u>9/15/1</u>		12:10
Latitude: 41.	56006.		le Colle	ection: Start	:: <u>9/15/1</u>		12:10
Latitude: 41. Longitude: •• Laboratory Analys	₹600€' 0.476380' es:	Samp	le Colle	End	:: <u>9/15/1</u>		12:10
Latitude: 41. Longitude: 5	Ses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 viais)	Samp Holding 14 14	Time	Analysis 1 Volatile TPH 1 VOC's in Soi Purge-and-T	in Soil by GC/l at Low Levels	MS by GC/N	12:10
Latitude: 41. Longitude: 5	Ses: Preservative 4 Deg C 4 Deg C, H2O + sodium	Samp Holding	Time	Analysis 1 Volatile TPH 1 VOC's in Soi Purge-and-T	in Soil by GC/	MS by GC/N	<u>12: 10</u> :_
Latitude: 41. Longitude: 5 Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035)	Ses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 viais)	Samp Holding 14 14	Time Days	Analysis 1 Volatile TPH 1 VOC's in Soi Purge-and-T 1 Mercury in S	in Soil by GC/l at Low Levels	MS by GC/N	<u>12: 10</u> :_
Latitude: 41. Longitude: 5 Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass	Ses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 viais) 4 Deg C	Holding 14 14 28	Time Days Days	Analysis 1 Volatile TPH 1 VOC's in Soi Purge-and-T 1 Mercury in S 1 Metals in So	in Soil by GC/	MS by GC/M t	12: 10 :
Latitude: 41. Longitude: 5 Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass 1 - 8 oz glass	Scoos' Ses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 viais) 4 Deg C 4 Deg C	Holding 14 14 28 180	Time Days Days Days	Analysis 1 Volatile TPH 1 VOC's in Soi Purge-and-T 1 Mercury in S 1 Metals in So 1 Semi-Volatil	in Soil by GC/ I at Low Levels rap Goil or Sediment lids by ICP-AES	MS by GC/M t S pounds i	12: 10 :
Latitude: 41. Longitude: 41. Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass 1 - 8 oz glass 1 - 8 oz glass	SCOOC' O.476380' Ses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C 4 Deg C 4 Deg C 4 Deg C	Holding 14 14 28 180 14	Time Days Days Days Days	Analysis 1 Volatile TPH 1 VOC's in Soi Purge-and-T 1 Mercury in S 1 Metals in So 1 Semi-Volatil 1 Pesticides in	in Soil by GC/l at Low Levels rap soil or Sedimen lids by ICP-AES e Organic Com	MS by GC/N t S pounds i	12: 10 :
Latitude: 41. Longitude: 41. Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass	SCOOC' Co.476360' Ces: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C Holding 14 14 28 180 14 14	Time Days Days Days Days Days Days	Analysis 1 Volatile TPH 1 VOC's in Soi Purge-and-T 1 Mercury in S 1 Metals in So 1 Semi-Volatil 1 Pesticides in 1 Herbicides in	in Soil by GC/I at Low Levels rap soil or Sedimen lids by ICP-AES e Organic Com Soil by GC/EC a Soil by GC/EC	MS by GC/N t S pounds i	12: 10 :	

Sample Comments:

ASR Number: 691	O Sample Number:	100	QC Cod		rix: Solid	ı ay ı	D: 6910-106
Project ID: THE	OTLPA		Pro	ject Manageı	: Todd Dav	/is	
City: Bet	nglefoot Lane Site tendorf perfund			State	: Iowa		
	iti-Site - General				Site ID:	07ZZ	Site OU: 00
Location Desc:	D8T-3; 2'-	4' B	45				
		Externa	l Samp	le Number:			
Expected Conc:	(or Circle One:	Low I	Medium	High)	Date		Time(24 hr)
Latitude: <u>भ</u> ा	,560 65 '	Samp	le Colie	ection: Start:	<u> </u>	5	12:22
Longitude: 🛩	0.426186			End:		_	;
Laboratory Analys	ses:						4
Container	Preservative	Holding	Time	Analysis			
2 - 40mL VOA vial	4 Deg C	14	Days	1 Volatile TPH i	n Soil by GC/I	MS	
4 - 40mL VOA vials (soil VOA 5035)	4 Deg C, H2O + sodium bisulfate (in 2 vials)	14	Days	1 VOC's in Soil		by GC/M	S Closed-System
				Purge-and-Tr			
1 - 8 oz glass	4 Deg C	28	Days	Purge-and-Tr 1 Mercury in Sc		t	
1 - 8 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C	28 180	Days Days		il or Sedimen		
1 - 8 oz glass	4 Deg C		•	1 Mercury In Sc	il or Sedimen ds by ICP-AES	5	ı Soil
1 - 8 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C	180	Days	1 Mercury in So 1 Metals in Soli	of Sedimen of by ICP-AES Organic Com	s pounds ir	ı Soil
1 - 8 oz glass 1 - 8 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C 4 Deg C	180 14	Days Days	1 Mercury In So 1 Metals in Soli 1 Semi-Volatile	oll or Sedimen ds by ICP-AES Organic Com Soil by GC/EC	S pounds ir	ı Soil
1 - 8 oz glass 1 - 8 oz glass 1 - 8 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C 4 Deg C 4 Deg C	180 14 14	Days Days Days	1 Mercury in So 1 Metals in Soli 1 Semi-Volatile 1 Pesticides in S	olf or Sedimen ds by ICP-AES Organic Com Soil by GC/EC Soil by GC/EC	S pounds ir	

Sample Collected By: TT

ASR Number: 6910	Sample Number:	106	QC Coc	le: M	latrix: Solid	Tag ID: 6910-106-
Project ID: THD	TLPA		Pro	ject Manag	ger: Todd Dav	vis
City: Bett	glefoot Lane Site endorf			Sta	ate: Iowa	
Program: Sup Site Name: Mult					Site ID:	: 07ZZ Site OU: 00
Location Desc:	D7T-3) 2'-	4' B	45	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	i	externa	ai Samp	le Numbei	; <u></u>	
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 h
Latitude: <u>41.</u>	560005'	Samı	ole Colle	ection: Sta	rt: <u>\$/15/1</u>	<u> (2;22</u>
Longitude: -70	<u>,446786</u>			E	nd://_	:_
Laboratory Analys	es:					4
Container	Preservative	Holding	Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days	1 Volatile Ti	PH In Soil by GC/	MS .
4 - 40mL VOA vials (soil VOA 5035)	4 Deg C, H2O + sodium blsulfate (in 2 vials)	14	Days	1 VOC's in S Purge-and		s by GC/MS Closed-System
1 • 8 oz glass	4 Deg C	28	Days	1 Mercury le	n Soll or Sedimen	it
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in	Solids by ICP-AE	S
1 ~ 8 oz glass	4 Deg C	14	Days	1 Semi-Vola	tile Organic Com	pounds in Soil
1 - 8 oz glass	4 Deg C	14	Days	1 Pesticides	in Soil by GC/EC	•
1 - 8 oz glass	4 Deg C	14	Days	1 Herbicides	s in Soil by GC/EC	3
	4 Deg C	14	Days	1 Semi-Vola	tile TPH (DRO &	ORO) in Soil by GC/FID
1 ~ 8 oz glass	4 Deg C					

Sample Collected By: TT

ASR Number: 691	Sample Number:	107	QC Coc	ie: Matr	ix: Solid	Tag I	D: 6910-107
Project ID: THE			Pro	ject Manager:	Todd Dav	is	
Project Desc: Tar	tendorf			State:	Iowa		
Program: Sup Site Name: Mul					Site ID:	07ZZ	Site 0U: 00
Location Desc:	DPT-4; 2	-41	865				
		Extern	al Samp	le Number: _			
Expected Conc:	(or Circle One:	Low	Medium	High)	Date		Time(24 hr)
Latitude: 41.	559953.	Sam	pie Colle	ection: Start:	9/15/19	<u> </u>	<u> 16: 10</u>
Longitude: -4	<u>, 445 395 ·</u>			End:		_	
Laboratory Analys	ses:			·			
Container	Preservative	Holdir	ng Time	Analysis			
2 - 40mL VOA vial	4 Deg C	14	Days	1 Volatile TPH in	Soil by GC/N	1 S	
4 - 40mL VOA vials (soil VOA 5035)	4 Deg C, H2O + sodium bisulfate (in 2 vials)	14	,-	1 VOC's in Soil a Purge-and-Tra	D		S Closed-System
1 - 8 oz glass	4 Deg C	28		1 Mercury in Soil			
1 - 8 oz glass	4 Deg C	180	•	1 Metals in Solid	•		
1 - 8 oz glass	4 Deg C	14		1 Semi-Volatile (oounds in	Soil
1 - 8 oz glass	4 Deg C	14		1 Pesticides in So			
1 - 8 oz glass	4 Deg C	14		1 Herbicides in S			
1 - 8 oz glass	4 Deg C	14	,-	1 Semi-Volatile 1	PH (DRO & (ORO) in S	oil by GC/FID
0 -	4 Deg C	0	Days	1 Percent Solid			

Sample Comments:

(N/A)

ASR Number: 69	10 Sample Number:	108	QC Co	de: Matr	ix: Solid	Tag ID: 6910-108
Project ID: T	HDTLPA		Pro	ject Manager:	Todd Dav	is
City: B	anglefoot Lane Site lettendorf			State:	Iowa .	
Program: S Site Name: M	superrund Iulti-Site - General				Site ID:	07ZZ Site OU: 00
Location Desc:	DPT-4; 10	'- IZ'	86	5		
	ı	Externa	al Samı	ole Number: _		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude:	41. 559953'	Samı	ole Coll	ection: Start:	9/15/1	<u> </u>
Longitude: "	90.445395			End:	_/_/_	
Laboratory Ana	lyses:					
Container	Preservative	Holding	Time	Analysis		
2 - 40mL VQA vial	4 Deg C	14	Days	1 Volatile TPH in	Soil by GC/N	1S
4 - 40mL VOA viais (so VOA 5035)	bisulfate (in 2 vials)	14	Days	Purge-and-Tra	р	by GC/MS Closed-System
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	•	
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile (Organic Comp	oounds in Soil
1 - 8 oz glass	4 Deg C	14	Days	1 Pesticides in Se	oil by GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 Herbicides in S	oil by GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile 7	TPH (DRO & 0	ORO) in Soil by GC/FID
0 -	4 Deg C	0	Days	1 Percent Solid		
Sample Commen	nts:			<u> </u>		

Sample Collected By: $\top \top$

Project ID: THE			Pro	ject Manago	er: Todd Dav	/is
- '	glefoot Lane Site tendorf erfund			Stat	te: Iowa	
Site Name: Mul					Site ID:	07ZZ Site OU: 00
Location Desc:	PT-5; 4'-6	' Be	-5			
	1	Externa	al Samp	le Number:		
Expected Conc:	(or Circle One:	Low I	Medium	High)	Date	Time(24 hr
Latitude: 41.	560462.	Samp	ole Colle	ection: Star	t: <u>4/16/1</u>	5 10:40
Latitude: <u>41.</u> Longitude: <u>-9</u> 0		Samı	ole Colle	ection: Star End		
	<u>. 473564.</u>	Samı	ole Colle			
Longitude: -90	<u>. 473564.</u>	Sami				
Longitude: -90 Laboratory Analys	<u>. 47 3 5 6</u> 4 ·			End Analysis		_:
Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035)	es: Preservative	Holding	; Time	End Analysis 1 Volatile TPh	d:/_/ H in Soil by GC/ bil at Low Levels	_:
Longitude: -90 Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil	ies: Preservative 4 Deg C 4 Deg C, H2O + sodium	Holding 14	Time Days	Analysis 1 Volatile TPI 1 VOC's in So	d:/_/ H in Soil by GC/ bil at Low Levels	MS by GC/MS Closed-System
Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035)	ies: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials)	Holding 14 14	Time Days Days	Analysis 1 Volatile TPH 1 VOC's in Sc Purge-and- 1 Mercury in	d:/_/ H in Soil by GC/bil at Low Levels Trap	MS by GC/MS Closed-System t
Longitude: -90 Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass	Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C	Holding 14 14 28) Time Days Days Days	Analysis 1 Volatile TPI 1 VOC's in So Purge-and- 1 Mercury in 1 Metals in So	d:/_/ H in Soil by GC/ oil at Low Levels Trap Soil or Sedimen	MS by GC/MS Closed-System t 4
Longitude: -90 Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass 1 - 8 oz glass	Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C 4 Deg C	Holding 14 14 28 180	Time Days Days Days Days	Analysis 1 Volatile TPI 1 VOC's in So Purge-and- 1 Mercury in 1 Metals in So	d:/_ H in Soil by GC/loil at Low Levels Trap Soil or Sedimen olids by ICP-AES	MS by GC/MS Closed-System t 4 S pounds in Soil
Longitude: -90 Laboratory Analys Container 2 - 40mL VOA vial 4 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass 1 - 8 oz glass 1 - 8 oz glass	Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C 4 Deg C 4 Deg C 4 Deg C	Holding 14 14 28 180 14	Days Days Days Days Days Days Days	Analysis 1 Volatile TPI 1 VOC's in So Purge-and- 1 Mercury in 1 Metals in So 1 Semi-Volati 1 Pesticides in	d:/ H in Soil by GC/loil at Low Levels Trap Soil or Sedimen olids by ICP-AES	MS by GC/MS Closed-System t 4 s pounds in Soil
Longitude: -90 Laboratory Analys Container 2 - 40mL VOA vials 4 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass	Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C	Holding 14 14 28 180 14	Days Days Days Days Days Days Days Days	Analysis 1 Volatile TPH 1 VOC's in Sore Purge-and- 1 Mercury in 1 Metals in Semi-Volati 1 Pesticides in 1 Herbicides	d:/_ d in Soil by GC/loil at Low Levels Trap Soil or Sedimen olids by ICP-AES ile Organic Com n Soil by GC/EC in Soil by GC/EC	MS by GC/MS Closed-System t 4 s pounds in Soil

Sample Comments:

(N/A)

Sample Collected By: $\top\!\!\!\top$

ASR Number: 6910	Sample Number:	110	QC Cod	ie: Matr	ix: Solid	Tag ID: 6910-110
Project ID: THE	OTLPA	•	Pro	ject Manager:	Todd Dav	is
-	iglefoot Lane Site tendorf perfund		٠.	State:	Iowa	
Site Name: Mul					Site ID:	07ZZ Site OU: 00
Location Desc:	DPT-5; 13'-	15'	5 65			
	i	Extern	al Samp	le Number: _		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude: 41	, 560462.	Sam	ple Coll	ection: Start:	9/16/1	5 11:00
Longitude: <u>~ 9</u>	0.423564			End:	_/_/_	_:_
Laboratory Analys	ses:			,		
Container	Preservative	Holdin	g Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days	1 Volatile TPH in	Soil by GC/N	15
4 - 40mL VOA vials (soil VOA 5035)	4 Deg C, H2O + sodium bisulfate (in 2 vials)	14	Days	Purge-and-Tra	Р	by GC/MS Closed-System
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil	or Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	s by ICP-AES	
I - o uz giass			_			
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile (Organic Comp	oounds in Soil
•	4 Deg C 4 Deg C	14 14	,_	1 Semi-Volatile (1 Pesticides in Se	-	oounds in Soil
1 - 8 oz glass	•		Days		oil by GC/EC	
1 - 8 oz glass 1 - 8 oz glass	4 Deg C	14	Days Days	1 Pesticides in So 1 Herbicides in S	oil by GC/EC soil by GC/EC	

Sample Collected By: TT

ASR Number: 69	10 Sample Number:	111	QC Cod	de: Matrix: Solid Tag ID: 6910-111
Project ID: T	HDTLPA		Pro	oject Manager: Todd Davis
Project Desc: To	anglefoot Lane Site			
City: B	ettendorf			State: Iowa
Program: S	uperfund			
Site Name: M	ulti-Site - General			Site ID: 07ZZ Site OU: 00
Location Desc:	DPT-6 ; 2'-4'	B&	5	
	·	Extern	al Samp	ole Number:
Expected Conc:	(or Circle One:	Low	Medium	High) Date Time(24 hr)
Latitude: 넥	1.559875	Sam	ple Coll	ection: Start: 9/16/15 12:28
Longitude: " _	<u>10.473288</u>			End://:
Laboratory Anal	yses:			
Container	Preservative	Holdin	g Time	Analysis
2 - 40mL VOA vial	4 Deg C	14	Days	1 Volatile TPH in Soil by GC/MS
4 - 40mL VOA viais (so VOA 5035)	bisulfate (in 2 vials)	. 14	,-	1 VOC's in Soil at Low Levels by GC/MS*Closed-System Purge-and-Trap
/1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil or Sediment
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids by ICP-AES
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile Organic Compounds in Soil
1 - 8 oz glass	4 Deg C	14	Days	1 Pesticides in Soll by GC/EC
1 - 8 oz glass	4 Deg C	14	Days	1 Herbicides in Soil by GC/EC
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile TPH (DRO & ORO) in Soil by GC/FID.
0 -	4 Deg C	0	Days	1 Percent Solid

Sample Comments:

(N/A)

0

ASR Number: 6910	Sample Number:	112	QC Co	de: Matr	ix: Solid	Tag ID: 6910-112
Project ID: THD			Pro	ject Manager:	Todd Day	/is
City: Bett Program: Sup	glefoot Lane Site endorf erfund			State:		
Site Name: Mult	i-Site - General				Site ID:	07ZZ Site OU: 00
Location Desc: $\overline{\mathcal{D}}$	PT-6; 12'-11	4' B	৫ 5			· · · · ·
		Extern	al Samp	ole Number: _		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr
Latitude: 41.	559875.	Sam	ple Coli	ection: Start:	9/16/1	15 12:40
Longitude: -90	.473268			E ņd:		:
Laboratory Analys	es:					
Container	Preservative	Holding	g Time	Analysis		
40mL VOA vial	4 Deg C	14	Days	1 Volatile TPH in	Soll by GC/I	MS
7 - 40mL VOA vials (soil VOA 5035) 1 - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C	14 28	Days Days	1 VOC's in Soil a Purge-and-Tra 1 Mercury in Soil	p	by GC/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid		
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile (•	
1 - 8 oz glass	4 Deg C	14	Days	1 Pesticides in Se		
1 - 8 oz glass	4 Deg C	14	Days	1 Herbicides in S	oil by GC/EC	;
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile 1	TPH (DRO &	ORO) in Soil by GC/FID
0 -	4 Deg C	0	Days	1 Percent Solid		
Sample Comments:						4

➂

Project ID:			Pro	ject Mai	nager:	Todd Dav	is	-
	Tanglefoot Lane Site							
City:	Bettendorf				State:	Iowa		
Program:	Superfund							
Site Name:	Multi-Sité - General					Site ID:	07ZZ	Site OU: 00
Location Desc:	SEDIMENT S	SAMPLE .	لم	ATIO	v 4			
		Externa	ıl Samp	le Num	ber: _			
Expected Conc	(or Circle On	e: Low i	Medium	High)		Date		Time(24 hr)
Latitudé:	in ceal Th	6				A	_	12.25
	71.337877	Samo	sie Coli	ection: :	Start:	7/16/17	7	· T : **
		Samp	ole Coll	ection: 3		9/16/11		17:35
	-40.4743 -40.4743	Samp	ole Coll	ection: 3	Start: End:	_/_/_		_: <u>-</u> :
	<u> </u>	Samp	ole Coll	ection: 8				
Longitude:	<u> </u>	Samp		ection: 8	End:			_;
Longitude: Laboratory An	- <u>ๆด.พ.</u> ร.2 <u>783</u> alyses:			Analys	End:		-	_;
Laboratory An Container 2 - 40mL VOA vial 4 - 40mL VOA vials (VOA 5035)	- 90.472783 alyses: Preservative 4 Deg C	Holding 14	Time	Analys 1 Volatil 1 VOC's	End: is e TPH in	Soil by GC/M	- IS	_;
Longitude: Laboratory An Container 2 - 40mL VOA vials (VOA 5035) 1 - 8 oz glass	- 40.472783 alyses: Preservative 4 Deg C 50il 4 Deg C, H2O + sodium	Holding 14	Time Days	Analys 1 Volatii 1 VOC's Purge	End: is e TPH in in Soil a' -and-Traj	Soil by GC/M	IS by GC/M	_:
Laboratory An Container 2 - 40mL VOA vial 4 - 40mL VOA vials (VOA 5035)	- 40 . 472.783 alyses: Preservative 4 Deg C soil 4 Deg C, H2O + sodium bisulfate (in 2 vials)	Holding 14 m 14	Time Days Days	Analys 1 Volatil 1 VOC's Purge- 1 Mercui	End: is e TPH in in Soil a -and-Tra	Soil by GC/M	IS by GC/M	_:
Longitude: Laboratory An Container 2 - 40mL VOA vials (VOA 5035) 1 - 8 oz glass	alyses: Preservative 4 Deg C soil 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C	Holding 14 m 14 28	Time Days Days Days	Analys 1 Volatii 1 VOC's Purge 1 Mercui 1 Netals	End: is te TPH in in Soil at -and-Trap ry in Soil in Solid	Soil by GC/M t Low Levels of	IS by GC/M	S Closed-System
Laboratory An Container 2 - 40mL VOA vials (VOA 5035) 1 - 8 oz glass 1 - 8 oz glass	- 90.471783 alyses: Preservative 4 Deg C soil 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C 4 Deg C	Holding 14 m 14 28 180	Time Days Days Days	Analys 1 Volatii 1 VOC's Purge- 1 Mercui 1 Metals 1 Semi-	End: is e TPH in in Soil a -and-Tra ry in Soil in Solid	Soil by GC/M Low Levels or Sediment	IS by GC/M	S Closed-System
Laboratory An Container 2 - 40mL VOA vials (VOA 5035) 1 - 8 oz glass 1 - 8 oz glass 1 - 8 oz glass	alyses: Preservative 4 Deg C soil 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C 4 Deg C 4 Deg C 4 Deg C	Holding 14 14 28 180	Time Days Days Days Days	Analys 1 Volatii 1 VOC's Purge- 1 Mercui 1 Metals 1 Semi-	End: is e TPH in in Soil a -and-Trai ry in Soil in Solids Volatile C	Soil by GC/M Low Levels or Sediment by ICP-AES	IS by GC/M	S Closed-System
Longitude: Laboratory An Container 2 - 40mL VOA vials (VOA 5035) 1 - 8 oz glass	alyses: Preservative 4 Deg C 50il 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C	Holding 14 m 14 28 180 14 14	Time Days Days Days Days Days Days	Analys 1 Volatil 1 VOC's Purge- 1 Mercui 1 Metals 1 Semi- 1 Pestici 1 Herbic	End: is e TPH in in Soil at- and-Trap ry in Soil in Solids Volatile C des in So ides in So	Soil by GC/M t Low Levels or Sediment by ICP-AES Organic Comp oil by GC/EC oil by GC/EC	IS by GC/M	S Closed-System

Sample Comments:

(N/A)

ASR Number: 69	10 Sample Number:			,		· ·	
Project ID: T			Pro	ject Manager:	Todd Dav	ris	
_	anglefoot Lane Site						
City: B	ettendorf			State:	: Iowa		
Program: S	uperfund						
Site Name: M	iulti-Site - General				Site ID:	07ZZ	Site OU: 00
Location Desc:	SEDIMENT	SAMP	le L	OCATION	1		
	1	Externa	al Samp	ie Number: _			
	(or Cirela One.	1 1		115-63	D-4-		Time(24 hr
Expected Conc:	(or Circle One:	LOW	Mealum	High)	Date		11110(24111
Expected Conc: Latitude: 4	(or Circle One:			ection: Start:	9/14/1	<u>5</u>	1:24
•	41. 55 <u>4334</u> '			• ,			
Latitude: 4	11.5593 <u>34</u> ' ·40.4 777 16'			ection: Start:	9/14/1		1:24
Latitude: 4	11.5593 <u>34</u> ' ·40.4 777 16'		ole Colle	ection: Start:	9/14/1		1:24
Latitude: 4 Longitude: 1 Laboratory Anai Container	41. 559334 ' ·40.47716' lyses:	Samp	ole Colle	ection: Start: End:	<u>4 /14/1</u> _/_/_		1:24
Latitude: 4 Longitude: 1 Laboratory Anai Container 2 - 40mL VOA viai 4 - 40mL VOA vials (so	iyses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials)	Samp Holding 14 14	Time Days	Analysis 1 Volatile TPH in Purge-and-Tra	Soil by GC/N	- 15 by GC/M	1:24
Latitude: 4 Longitude: 5 Laboratory Anai Container 2 - 40mL VOA vials (so VOA 5035) 1 - 8 oz glass	11. 559334 ' -90.4777 16' lyses: Preservative 4 Deg C ill 4 Deg C, H2O + sodium	Samp Holding 14	Time	Analysis 1 Volatile TPH in 1 VOC's in Soil a Purge-and-Tra 1 Mercury in Soi	Soil by GC/N	- 4s by GC/M	<u>1 :24</u> :_
Latitude: 4 Longitude: 5 Laboratory Anai Container 2 - 40mL VOA vials (so VOA 5035) 1 - 8 oz glass 1 - 8 oz glass	iyses: Preservative 4 Deg C 4 Deg C, H2O + sodium bisulfate (in 2 vials)	Samp Holding 14 14	Time Days	Analysis 1 Volatile TPH in Purge-and-Tra	Soil by GC/N	- 4s by GC/M	<u>1 :24</u> :_
Latitude: 4 Longitude: 5 Laboratory Anai Container 2 - 40mL VOA vials (so VOA 5035) 1 - 8 oz glass 1 - 8 oz glass 1 - 8 oz glass	iyses: Preservative 4 Deg C iil 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C	Holding 14 14 28	Time Days Days	Analysis 1 Volatile TPH in 1 VOC's in Soil a Purge-and-Tra 1 Mercury in Soi	Soil by GC/N at Low Levels of or Sediment s by ICP-AES	- 4s by GC/M	1:24
Latitude: 4 Longitude: 1	iyses: Preservative 4 Deg C iil 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C 4 Deg C	Holding 14 14 28 180	Time Days Days Days Days	Analysis 1 Volatile TPH in 1 VOC's in Soil a Purge-and-Tra 1 Mercury in Soi 1 Metals in Solid	Soil by GC/N at Low Levels p I or Sediment is by ICP-AES Organic Comp	- 4s by GC/M	1:24
Latitude: 4 Longitude: 9 Laboratory Anai Container 2 - 40mL VOA vials (so VOA 5035) 1 - 8 oz glass 1 - 8 oz glass 1 - 8 oz glass	iyses: Preservative 4 Deg C iii 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C 4 Deg C 4 Deg C	Holding 14 14 28 180 14	Time Days Days Days Days Days	Analysis 1 Volatile TPH in 1 VOC's in Soil a Purge-and-Tra 1 Mercury in Soil 1 Metals in Solid	Soil by GC/N at Low Levels by or Sediment s by ICP-AES Organic Comp oil by GC/EC	- by GC/M t sounds in	1:24
Latitude: 4 Longitude: 1 Laboratory Anai Container 2 - 40mL VOA vials (so VOA 5035) 1 - 8 oz glass	iyses: Preservative 4 Deg C iii 4 Deg C, H2O + sodium bisulfate (in 2 vials) 4 Deg C	Holding 14 14 28 180 14 14	Time Days Days Days Days Days Days	Analysis 1 Volatile TPH in 1 VOC's in Soil a Purge-and-Tra 1 Mercury in Soi 1 Metals in Solid 1 Semi-Volatile (1 Pesticides in S	Soil by GC/N at Low Levels by I or Sediment by ICP-AES Organic Comp oil by GC/EC Soil by GC/EC	MS by GC/M t sounds in	1:24

Sample Comments:

(N/A)

ASR Number: 6	910 Sample Number:	114	QC Co	ode: Matrix: Solid Tag ID: 6910-114-F
Project ID:	THOTLPA		Pro	oject Manager: Todd Davis
. City:	Tanglefoot Lane Site Bettendorf			State: Iowa
Program: : Site Name:	Superfund Multi-Site - General			Site ID: 07ZZ Site OU: 00
Location Desc:	SEDIMENT	SAMP	LE L	OCATION 1
		Externa	al Samı	ple Number:
Expected Conc:	(or Circle One:	Low	Medium	n High) Date Time(24 hr)
Latitude:	41.559334 '	Samı	ole Coll	lection: Start: <u>9/14/15</u> 9:24
Longitude:	-90,477716	·		End://:
Laboratory Ana	ilyses:			
Container	Preservative	Holding	Time	Analysis
2 - 40ml, VOA vial	4 Deg C	14	Days	1 Volatile TPH in Soil by GC/MS
4 - 40ml VOA vials (s VOA 5035)	bisulfate (in 2 vials)	14	Days	1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap
1 - 8 oz glass	4 Deg C	- 28	Days	1 Mercury in Soil or Sediment
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids by ICP-AES
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile Organic Compounds in Soil
1 - 8 oz glass	4 Deg C	14	Days	1 Pesticides in Soil by GC/EC
1 - 8 oz glass	4 Deg C	14	Days	1 Herbicides in Soil by GC/EC
1 - 8 02 glass	4 Deg C	14	Days	1 Semi-Volatile TPH (DRO & ORO) in Soil by GC/FID
0 -	4 Deg C	0	Days	1 Percent Solid
Sample Commo	nter			

Sample Comments:

ASR Number: 69:	10 Sample Number:	115	QC Co	de: Matr	ix: Solid	Tag ID	: 6910-115
Project ID: The Project Desc: Ta	IDTLPA inglefoot Lane Site		Pro	ject Manager:	Todd Dav	ris	
-	ettendorf			State:	Iowa		
Program: St	perfund						
Site Name: M	ulti-Site - General				Site ID:	07ZZ \$	Site OU: 00
Location Desc:	SEDIMENT SA	MPL	e La	CATION :	2.		
	1	Externa	al Samp	ole Number:			
Expected Conc:	(or Circle One:	Low	Medium	High)	Date		Time(24 hr
Latitude: <u>변</u>	1.5545(B'	Sam	ole Coll	ection: Start:	9/17/1	<u>5</u> .	11:35
Longitude: •	10 . 494 345 ·			End:	//_	_	` _:_
Laboratory Analy	-	14-1-17-		A			
Container 2- 40mL VOA vial	Preservative	Holding		Analysis	Call by CCA	40	
2 4- 40mL VOA vials (soi	4 Deg C	14	Days	1 Vocto in Soil :			Clased Evetem
VOA 5035)	l 4 Deg C, H2O + sodium bisulfate (in 2 vials)	14	Days	1 VOC's in Soil a Purge-and-Tra		Dy GC/MS	Ciosea-System
/1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soi	l or Sediment	t	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	•		
/1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile	-	pounds in S	Soil
1 - 8 oz glass	4 Deg C	14	Days	1 Pesticides in S	oil by GC/EC		
1 - 8 oz giass	4 Deg C	14	Days	1 Herbicides in S	oil by GC/EC		
1 - 8 oz glass	4 Deg C	14	Days	1 Semi-Volatile	TPH (DRO & (ORO) in So	il by GC/FID
0 -	4 Deg C	0	Days	1 Percent Solid			
Sample Comment	s:						
(N/A)	MS(MOD	٥٥٤١	_ 5 075	٥			
	MS(MSD)	/our	(3)				

ASR Number: 69:	10 Sample Number:	116	QC Cod	de: Matrix	c: Solid	Tag ID: 6910-116
Project ID: Th			Pro	ject Manager:	Todd Dav	is
	nglefoot Lane Site ettendorf sperfund			State: 1	lowa	•
_	ulti-Site - General				Site ID:	07ZZ Site OU: 00
Location Desc:	SEDIMENT SA	MPLE	ا ا	LATION 3		
		Externa	al Samp	ole Number: _		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude: 4	1.55925L*	Sami	ole Coli	ection: Start:	9/14/19	5 1 <u>4 2</u> 0
Longitude: 🗝						
Laboratory Analy	/ses:					
Container	Preservative	Holding	Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days	1 Volatile TPH in S	oil by GC/N	15
4 - 40mL VOA vials (soi VOA 5035)	4 Deg C, H2O + sodium bisulfate (in 2 vials)	14	Days	1 VOC's in Soil at Purge-and-Trap	Low Levels	by GC/MS Closed-System
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil of	or Sediment	:
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids	by ICP-AES	;
•			Days	1 Semi-Volatile Or	nanic Comi	sounds in Eatl
1 - 8 oz glass	4 Deg C	14	20,3	T Delli Tolatile Ol	30	ounus in Şoii
1 - 8 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C	14	Days	1 Pesticides in Soi	-	ounus in şoii
	-		•		by GC/EC	•
1 - 8 oz glass	4 Deg C	14	Days	1 Pesticides in Sol 1 Herbicides in So	by GC/EC	•

Sample Collected By: Π

ASR Number: 6910	Sample Number:	205	QC Co	de: Matr	ix: Water T	ag ID: 6910-205
Project ID: THE Project Desc: Tan			Pro	ject Manager:	Todd Davis)
City: Bet	tendorf			State:	Iowa	
Program: Sup Site Name: Mul	erfund ti-Site - General				Site ID: 07	7ZZ Site OU: 00
Location Desc: GV	sample Surfa	C & (MATE	R LOCATIO	7 4	
		Extern	al Samı	ole Number:		
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude: <u>प</u> ा.	559677.	Sam	pie Coli	ection: Start:	9/16/15	14:30
Longitude: -90	· 442463			End:	//	_:_
Laboratory Analys	es:				· · · · · · · · · · · · · · · · · · ·	
Container	Preservative	Holdin	g Time	Analysis		4
1 - 1 Liter plastic bottle	5 mL of HNO3/L to pH<2	28	Days	1 Mercury in Wa	ter	
1 - 1 Liter plastic bottle	Field Filtered, HNO3 to pH<2	180	Days	1 Metals - Dissol	ved, in Water by	/ ICP/MS
1 - 1 Liter plastic bottle	Field Filtered, HNO3 to pH<2, 4 Deg C	28	Days	1 Mercury - Diss	olved, in Water	
1 - 1 Liter plastic bottle	HNO3 to pH<2	180	Days	1 Metals in Wate	r by ICP/MS	•
1 - 128oz amber glass	4 Deg C	7	Days	1 Semi-Volatile (Organic Compou	nds in Water
1 - 128oz amber glass	4 Deg C	7	Days	1 Pesticides in W	ater by GC/EC	
1 - 128oz amber glass	4 Deg C	7	Days	1 Herbicides in V	Vater by GC/EC	
1 - 128oz amber glass	4 Deg C	7	Days	1 Semi-Volatile	PH (DRO & ORO) in Water by GC/FID
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 VOCs in Water	by GC/MS for La	ow Detection Limits
2 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 Volatile TPH in	Water by GC/MS	S

Sample Comments:

ASR Number: 6	910 Sample Number	200	20 00	de: Matrix: Water Tag ID: 6910-206
	THDTLPA		Pro	nject Manager: Todd Davis
	Tanglefoot Lane Site			·
-	Bettendorf			State: Iowa
_	Superfund			
Site Name:	Multi-Site - General			Site ID: 07ZZ Site OU: 00
Location Desc:	GW sample Surf	.CE W	ATER	SAMPLE LOCATION 1
		Extern	al Samı	ple Number:
Expected Conc:	(or Circle One	: Low	Medium	High) Date Time(24 hr
Latitude:	41.554331	Sam	ple Coll	ection: Start: <u>9/14/15</u> <u>9:10</u>
Longitude:	<u>-96.43469</u> 1			End://:
Laboratory Ana	ılyses:			
Container	Preservative	Holding	g Time	Analysis
1 - 1 Liter plastic bott	te 5 mL of HNO3/L to pH<	2 28	Days	1 Mercury in Water
1 - 1 Liter plastic bott	ie Field Filtered, HNO3 to pH<2	180	Days	1 Metals - Dissolved, in Water by ICP/MS
1 - 1 Liter plastic bott	le Field Filtered, HNO3 to pH<2, 4 Deg C	28	Days	1 Mercury - Dissolved, in Water
1 - 1 Liter plastic bott	le HNO3 to pH<2	180	Days	1 Metals in Water by ICP/MS
L - 128oz amber glas:	s 4 Deg C	7	Days	1 Semi-Volatile Organic Compounds In Water
l - 128oz amber glas:	s 4 Deg C	7	Days	1 Pesticides in Water by GC/EC
l - 128oz amber glas:	s 4 Deg C	7	Days	1 Herbicides in Water by GC/EC
1 - 128oz amber glas:	s 4 Deg C	7	Days	1 Semi-Volatile TPH (DRO & ORO) in Water by GC/FID
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 VOCs in Water by GC/MS for Low Detection Limits

Sample Collected By: TT

ASR Number: 6910	Sample Number:	207	QC Co	de:	Matr	ix: Water	Tag ID: 6910-207-
Project ID: THE			Pro	ject Ma	nager:	Todd Davi	S
City: Bet	iglefoot Lane Site tendorf perfund ti-Site - General				State:	Iowa	07ZZ Site QU: 00
Location Desc: Su	rface sample Sur	FACE	W A	TER	SAM	PLE I	-OCATION 23
		Externa	i Samı	ole Num	ber: _	- : -:	
Expected Conc:	(or Circle One:	Low N	1edium	High)		Date	Time(24 hr
Latitude: <u>41</u>	.559252.	Samp	le Coll	ection:	Start:	9/17/19	13:50
Longitude: -90	o. 476129 '				End:	_/_/_	_:_
Laboratory Analys	ses:						4
Container	Preservative	Holding	Time	Analys	sis		
l - 1 Liter plastic bottle	5 mL of HNO3/L to pH<2	28	Days	1 Mercu	iry in Wa	ter	
- 1 Liter plastic bottle	Field Filtered, HNO3 to	180	Days	1 Metal:	s - Dissol	ved, in Water	by ICP/MS
L - 1 Liter plastic bottle	pH<2 Field Filtered, HNO3 to pH<2, 4 Deg C	28	Days	1 Mercu	ıry - Diss	olved, in Wate	er
l - 1 Liter plastic bottle	HNO3 to pH<2	180	Days	1 Metals	s in Wate	r by ICP/MS	
- 128oz amber glass	4 Deg C	7	Days	1 Semi-	Volatile (Organic Comp	ounds in Water
- 128oz amber glass	4 Deg C	7	Days	1 Pestic	ides in W	ater by GC/E0	2
128oz amber glass	4 Deg C	7	Days	1 Herbi	cides in V	Vater by GC/E	С
l - 128oz amber glass	4 Deg C	7	Days	1 Semi-	Volatile 1	TPH (DRO & O	RO) in Water by GC/FID
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 VOCs	in Water	by GC/MS for	Low Detection Limits
2 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 Volati	le TPH in	Water by GC/	MS
Sample Comments	:				***************************************		
(N/A)							

ASR Number:	6910 Sample Numbers	SIO OC CO	ode: FB Mat	rix: Water Tag	ID: 6110 213 150
Project ID:	THDTLPA	Pr	oject Manager	: Todd Davis	······································
City:	Tanglefoot Lane Site Bettendorf		State	: Iowa	
	Superfund Multi-Site - General			Site ID: 07Z	Z Site OU: 00
Location Desc:	TVOA & TPH GRO Trip Bla	ink sample			
	E	xternal Sam	ple Number: .		
Expected Conc	(or Circle One:	Low Mediun	n High)	Date 9 17 15	Time(24 hr)
Latitude:		Sample Col	lection: Start:		20:1
Longitude:		•	End:	_/_/_ ·	:_ _
Laboratory An	alyses:		<u></u>	······································	
Container	Preservative	Holding Time	Analysis		
4 - 40mL VOA viel	4 Deg C, HCL to pH<2	14 Days	1 VOCs in Wate	r by GC/MS for Low	Detection Limits
2 - 40mL VOA vial	4 Deg C, HCL to pH<2	14 Days	1 Voiatile TPH in	n Water by GC/MS	
Sample Comme	ents:				····
(N/A)					

ASR Number: 691	0 Sample Number:	211	QC Cod	ie: FB	Matr	ix: Water	Tag ID: 6910-211-FE	
Project ID: TH		Project Manager: Todd Davis						
Project Desc: Tar City: Be Program: Su	ttendorf				State:	Iówa		
_	eti-Site - General					Site ID:	07ZZ Site OU: 00	
Location Desc: Fi	eld Blank sample						•	
	i	xterr	nal Samp	le Num	ber: _			
Expected Conc:	(or Circle One:	Low	Medium	High)		Date	Time(24 hr)	
Latitude: _		San	ple Coll	ection:	Start:	9/14/1	<u> 15:10</u>	
Longitude:					End:		:-	
Laboratory Analy	ses:							
Container	Preservative	Holdi	ng Time	Analy:	sis			
/1 - 1 Liter plastic bottle	5 mL of HNO3/L to pH<2	28	Days	1 Mercu	ıry in Wat	er .		
1 - 1 Liter plastic bottle	Field Filtered, HNO3 to pH<2	180	Days	1 Metal	s - Dissol	ved, in Water	by ICP/MS	
1 - 1 Liter plastic bottle	Field Filtered, HNO3 to pH<2, 4 Deg C	28	Days	1 Mercu	ıry - Disso	olved, in Wate	er .	
1 - 1 Liter plastic bottle	HNO3 to pH<2	180	Days	1 Metal	s in Wate	by ICP/MS		
1 - 128oz amber glass	4 Deg C	7	Days	1 Semi-	-Volatile C	Organic Comp	ounds in Water	
1 - 128oz amber glass	4 Deg C	7	Days	1 Pestic	ides in W	ater by GC/E	С	
1 - 128oz amber glass	4 Deg C	7	Days	1 Herbi	cides in W	ater by GC/E	:C	
1 - 128oz amber glass	4 Deg C	7	Days	1 Semi-	-Volatile T	PH (DRO & C	ORO) in Water by GC/FID	
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 VOCs	in Water	by GC/MS for	r Low Detection Limits	
2 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days			Water by GC		
Sample Comments	s:	· · · · · · · · · · · · · · · · · · ·						

Sample Collected By: TT

Project ID: THDTLPA Project Desc: Tanglefoot Lane Site City: Bettendorf			Project Manager: Todd Davis State: Iowa					
Site Name: Mul						Site ID: 07	ZZ Site OU: 00	
Location Desc: Ri	nsate sample							
		Externa	l Samp	le Numb	er: _			
Expected Conc:	(or Circle One:	Low i	Medium	High)		Date	Time(24 hr)	
Latitude:	_·	Samp	le Colle	ection: S	tart:	9/16/15	<u>14:24</u>	
Longitude:					End:	//	_:_	
Laboratory Analys	ses:		· · · · · ·					
Container	Preservative	Holding	Time	Analysi	ş			
1 - 1 Liter plastic bottle	5 mL of HNO3/L to pH<2	28	Days	1 Mercur	y In Wat	er	•	
1 - 1 Liter plastic bottle	Field Filtered, HNO3 to	180	Days	1 Metals	- Dissolv	ved, in Water by	ICP/MS	
1 - 1 Liter plastic bottle	pH<2 Field Filtered, HNO3 to pH<2, 4 Deg C	28	Days	1 Mercury - Dissolved, in Water				
1 - 1 Liter plastic bottle	HNO3 to pH<2	180	Days	1 Metals	in Wateı	by ICP/MS		
1 - 128oz amber glass	4 Deg C	7	Days	1 Semi-Volatile Organic Compounds in Water				
T - TEOOS GILIDEI GIGSS		7	Days	1 Pesticides in Water by GC/EC				
	4 Deg C			1 Herbicides in Water by GC/EC				
1 - 128oz amber glass	4 Deg C 4 Deg C	7	Days	1 Herbici	des in W	ater by GC/EC		
1 - 128oz amber glass 1 - 128oz amber glass	•	7	Days Days			•) in Water by GC/FID	
1 - 128oz amber glass 1 - 128oz amber glass 1 - 128oz amber glass 1 - 128oz amber glass 4 - 40mL VOA vial	4 Deg C			1 Semi-V	olatile T	PH (DRO & ORO)) in Water by GC/FID w Detection Limits	

Sample Comments:

(N/A)

APPENDIX E ANALYTICAL DATA PACKAGE

United States Environmental Protection Agency Region 7 300 Minnesota Avenue Kansas City, KS 66101

Date: 10/26/2015

Subject: Transmittal of Sample Analysis Results for ASR #: 6910

Project ID: THDTLPA

Project Description: Tanglefoot Lane Site

From: Margaret E.W. St. Germain, Chief

Laboratory Technology & Analysis Branch, Environmental Sciences & Technology Division

To: Todd Davis
SUPR/ERNB

Enclosed are the analytical data for the above-referenced Analytical Services Request (ASR) and Project. The Regional Laboratory has reviewed and verified the results in accordance with procedures described in our Quality Manual (QM). In addition to all of the analytical results, this transmittal contains pertinent information that may have influenced the reported results and documents any deviations from the established requirements of the QM.

Please contact us within 14 days of receipt of this package if you determine there is a need for any changes. Please complete the enclosed Customer Satisfaction Survey and Data Disposition/Sample Release memo for this ASR as soon as possible. The process of disposing of the samples for this ASR will be initiated 30 days from the date of this transmittal unless an alternate release date is specified on the Data Disposition/Sample Release memo.

If you have any questions or concerns relating to this data package, contact our customer service line at 913-551-5295.

Enclosures

cc: Analytical Data File.

Summary of Project Information

ASR Number: 6910

Project Manager: Todd Davis

Org: SUPR/ERNB Pho

Phone: 913-551-7749

Project ID: THDTLPA

Project Desc: Tanglefoot Lane Site

Location: Bettendorf

State: Iowa Program: Superfund

Site Name: Multi-Site - General

Site ID: 07ZZ Site OU: 00

Purpose: Site Preliminary Assessment

GPRA PRC: 303DD2

Preliminary Assessment sampling.

Explanation of Codes, Units and Qualifiers used on this report

Sample QC Codes: QC Codes identify the type of sample for quality control purpose.

Units: Specific units in which results are reported.

__ = Field Sample FB = Field Blank FD = Field Duplicate ug/kg = Micrograms per Kilogram
ug/L = Micrograms per Liter
mg/kg = Milligrams per Kilogram
mg/L = Milligrams per Liter

ug/m3 = Micrograms per Cubic Meter

% = Percent

Data Qualifiers: Specific codes used in conjunction with data values to provide additional information on the quality of reported results, or used to explain the absence of a specific value.

(Blank)= Values have been reviewed and found acceptable for use.

U = The analyte was not detected at or above the reporting limit.

J = The identification of the analyte is acceptable; the reported value is an estimate.

UJ = The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

Sample Information Summary

ASR Number: 6910
Project ID: THDTLPA

Project Desc: Tanglefoot Lane Site

Sample No		Matrix	Location Description	External Sample No	Start Date	Start Time	End Date	End Time	Receipt Date
1 -	·	Air	DPT-1 (5.5-6.0' bgs)		09/14/2015	18:40	09/14/2015	18:42	09/18/2015
2 -	·	Air	DPT-2 (3.5-4.0' bgs)		09/15/2015	11:31	09/15/2015	11:33	09/18/2015
3 -	·_	Air	DPT-3 (3.5-4.0' bgs)		09/15/2015	13:40	09/15/2015	13:43	09/18/2015
4 -	·	Air	DPT-4 (5.5-6.0' bgs)		09/15/2015	16:50	09/15/2015	16:53	09/18/2015
5 -		Air	DPT-5 (5.5-6' bgs)		09/16/2015	11:25	09/16/2015	11:27	09/18/2015
6 -	·	Air	DPT-6 (4.5-5.0' bgs)		09/16/2015	13:49	09/16/2015	13:51	09/18/2015
7 -	·	Air	Ambient Air-1		09/17/2015	14:30	09/17/2015	14:33	09/18/2015
9 -	· FB	Air	Field Blank		09/17/2015	14:50			09/18/2015
101 -	_	Solid	DPT-1 (3-5' bgs)		09/14/2015	17:00			09/18/2015
102 -	·	Solid	DPT-1 (5-7' bgs)		09/14/2015	17:15			09/18/2015
103 -	·	Solid	DPT-2 (2-4' bgs)		09/15/2015	09:45			09/18/2015
104 -	·	Solid	DPT-2 (14-16' bgs)		09/15/2015	10:10			09/18/2015
105 -		Solid	DPT-3 (14-16' bgs)		09/15/2015	12:10			09/18/2015
106 -	_	Solid	DPT-3 (2-4' bgs)		09/15/2015	12:22			09/18/2015
106 -	·FD	Solid	DPT-3 (2-4' bgs)		09/15/2015	12:22			09/18/2015
107 -	·	Solid	DPT-4 (2-4' bgs)		09/15/2015	16:10			09/18/2015
108 -	· —	Solid	DPT-4 (10-12' bgs)		09/15/2015	16:25			09/18/2015
109 -	·	Solid	DPT-5 (4-6' bgs)		09/16/2015	10:40			09/18/2015
110 -	· —	Solid	DPT-5 (13-15' bgs)		09/16/2015	11:00			09/18/2015
111 -	·	Solid	DPT-6 (2-4' bgs)		09/16/2015	12:28			09/18/2015
112 -	· <u> </u>	Solid	DPT-6 (12-14' bgs		09/16/2015	12:40			09/18/2015
113 -	· <u>—</u>	Solid	Sediment sample location 4		09/16/2015	17:35			09/18/2015
114 -	·	Solid	Sediment sample location 1		09/17/2015	09:24			09/18/2015
114 -	FD	Solid	Sediment sample location 1		09/17/2015	09:24			09/18/2015
115 -	· ·	Solid	Sediment sample location 2		09/17/2015	11:35			09/18/2015
116 -	·	Solid	Sediment sample location 3		09/17/2015	14:20			09/18/2015
201 -	·	Water	DPT-1 (22-26' bgs)		09/14/2015	17:30			09/17/2015
202 -	··	Water	DPT-2 (16-20' bgs)		09/15/2015	10:30			09/17/2015
203 -		Water	DPT-3 (16-20' bgs)		09/15/2015	13:08			09/17/2015
· 203 -	· FD	Water	DPT-3 (16-20' bgs)		09/15/2015	13:08			09/17/2015
204 -	_	Water	DPT-4 (14-18' bgs)		09/15/2015	17:00			09/17/2015
205 -	·	Water	Surface water location 4		09/16/2015	17:30			09/18/2015
206 -	·	Water	Surface water sample location 1		09/17/2015	09:10			09/18/2015
207 -	_	Water	Surface water sample location 3		09/17/2015	13:50			09/18/2015
210 -			LDL VOA & TPH VOA (GRO) Trip Blank sample		09/17/2015	20:10			09/18/2015
211 -		Water	Field Blank sample		09/17/2015	15:10			09/18/2015
212 -		Water	Rinsate sample		09/16/2015	14:24			09/18/2015
213 -	· FB	Water	LDL VOA & TPH VOA (GRO) Trip Blank sample		09/15/2015	22:50			09/17/2015

RLAB Approved Analysis Comments

10/26/2015

Project Desc Tanglefoot Lane Site

Analysis Comments About Results For This Analysis

1 VOCs in Air at Ambient Levels by GC/MS

Lab: RASP Contract Lab (Out-Source)

Method: Similar to EPA Region 7 RLAB Method 3230.4G (see comments)

Samples: 1-__ 2-__ 3-__ 4-__ 5-__ 6-__ 7-__

9-FB

Comments:

ASR Number: 6910

Project ID: THDTLPA

The pressure of the sample canisters was checked prior to analysis. Samples 6910-7 was received at 6.0 psia. The sample required pressurization prior to analysis which resulted in an initial dilution of the sample. The field blank 6910-9FB was received under vacuum and required pressurization to facilitate analysis. Samples 6910-1 thru 6910-7 required dilutions due to target compound concentrations.

The MSD recovery (227%) for naphthalene in sample 6910-1 exceeded the upper control limit of 221%. Naphthalene was J-coded in sample 6910-1. Although the analyte in question has been positively identified in the sample, the quantitation is an estimate (J-coded) due to high recovery of this analyte in the laboratory matrix spike duplicate. The actual concentration for this analyte may be lower than the reported value.

1 Herbicides in Soil by GC/EC

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3240.2J

Basis: Dry

Samples: 101-__ 102-__ 103-__ 104-__ 105-__ 106-__ 106-FD

107-__ 108-__ 109-__ 110-__ 111-__ 112-__ 113-__

114-__ 114-FD 115-__ 116-__

Comments:

Pentachlorophenol was J-coded in samples 103 and 106. Although the analyte in question has been positively identified in the sample, the quantitation is an estimate (J-coded) due to the reported value exceeding the calibrated range of the instrument.

Interferences can add to the results on one column that causes a poor quantitation match between the two columns or can 'mask' the analyte peak. In those cases, the sample results from the column without the interference is U-coded. The following results have been U-coded for this reason: 2,4-D for samples 105, 106, and 106-FD.

1 Mercury in Soil or Sediment

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Dry

Samples: 101-__ 102-__ 103-__ 104-__ 105-__ 106-__ 106-FD

RLAB Approved Analysis Comments

10/26/2015

Project ID: THDTLPA

Project Desc Tanglefoot Lane Site

Analysis Comments About Results For This Analysis

Samples: 107-__ 108-__ 109-__ 110-__ 111-__ 112-__ 113-__

114-__ 114-FD 115-__ 116-__

Comments:

(N/A)

1 Metals in Solids by ICP-AES

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Dry

Samples: 101-__ 102-__ 103-__ 104-__ 105-__ 106-__ 106-FD

107-__ 108-__ 109-__ 110-__ 111-__ 112-__ 113-__

114-__ 114-FD 115-__ 116-__

Comments:

Slight arsenic, calcium, lead, and selenium contamination were found in the preparation and/or calibration blanks. Only samples containing these analytes at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained these analytes but at a level less than ten times the contamination in the blank have the results U-coded indicating that the reporting limits have been raised to the levels found in the samples. Samples affected were: arsenic in -104, -108, and -110, calcium in -107, -108, and -111, lead in -110, and selenium in -106FD.

Slight negative thallium contamination was found in the calibration blanks. Only samples containing this analyte at a level greater than five times the contamination level of the blank are reported without being qualified. All samples that contained this analyte but at a level less than five times the contamination in the blank have the result J-coded. Samples affected were: thallium in -110 and -114.

Cobalt in samples -104, -110, and -115, lead in sample -110, silver in samples -101 through -116, and thallium in samples -101 through -109, -111 through -113, -114FD, -115, and -116 were UJ-coded and lead in samples -107 and -108 and thallum in samples -110 and -114 were J-coded. Positive results less than ten times the levels found were J-coded and non-detects were UJ-coded due to negative recoveries of these analytes in the interference check samples (ICS) which were not present in the ICS solution but whose absolute values were greater than the method detection limits (MDL), therefore, a possibility of false negatives exists. The actual reporting limits may be higher than the reported values.

Antimony was UJ-coded in sample -115. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte (antimony: 39% vs 75-125%) in the laboratory matrix spike. The actual reporting limit for this analyte may be higher than the reported value.

Lead was J-coded in sample -115. Although the analyte in question has been positively identified in the sample, the quantitation is an estimate (J-coded) due to high recovery of this analyte (lead: 140% vs 75-125%) in the laboratory matrix spike. The actual concentration for this analyte may be lower than the reported value.

RLAB Approved Analysis Comments

10/26/2015

Project ID: THDTLPA

Project Desc Tanglefoot Lane Site

Analysis Comments About Results For This Analysis

1 Percent Solid

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3142.9G

Basis: N/A

Samples: 101-__ 102-__ 103-__ 104-__ 105-__ 106-__ 106-FD

107-__ 108-__ 109-__ 110-__ 111-__ 112-__ 113-__ 114-__ 114-FD 115-__ 116-__

Comments:

(N/A)

1 Pesticides in Soil by GC/EC

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Dry

Samples: 101-__ 102-__ 103-__ 104-__ 105-__ 106-__ 106-FD

107-__ 108-__ 109-__ 110-__ 111-__ 112-__ 113-__

114-__ 114-FD 115-__ 116-__

Comments:

1 Semi-Volatile Organic Compounds in Soil

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Dry

Samples: 101-__ 102-__ 103-__ 104-__ 105-__ 106-__ 106-FD

107-__ 108-__ 109-__ 110-__ 111-__ 112-__ 113-__

114-__ 114-FD 115-__ 116-__

Comments:

Acetophenone and caprolactam were UJ-coded in samples -103, -106, -106FD, and -113 through -115. These analytes were not found in the samples at or above the reporting limits, however, the reporting limits are an estimate (UJ-coded) due to the continuing calibration check not meeting accuracy specifications (%D: acetophenone (20.3% vs 20% and caprolactam (36.9% vs 30%). The actual reporting limits for these analytes may be lower than the reported values.

1 Semi-Volatile TPH (DRO & ORO) in Soil by GC/FID

Lab: RASP Contract Lab (Out-Source)

Method: Similar to Modified version of SW846 Method 8015 (see comments)

RLAB Approved Analysis Comments

10/26/2015

Project ID: THDTLPA

Project Desc Tanglefoot Lane Site

Analysis Comments About Results For This Analysis

Basis: Dry

115-__ 116-__

Comments:

1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Dry

Comments:

Several samples were analyzed at medium level and sample -104 was analyzed at medium level with a dilution (7.6X), therefore, have elevated reporting limits.

Acetone was J-coded in sample -114FD. Although the analyte in question has been positively identified in the sample, the quantitation is an estimate (J-coded) due to high recovery of a surrogate analyte (2-butanone-d5: 146% vs 20-135%) in this sample. The actual concentration for this analyte may be lower than the reported value.

Bromoform, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dibromo-3-chloropropane, 1,2,4-trichlorobenzene, and 1,2,3-trichlorobenzene were UJ-coded in samples -106FD and -116. Associated non-detects were UJ-coded due to low internal standard response. The actual concentrations for these analytes may be higher than the reported values.

1,1-dichloroethene was UJ-coded in samples -101 through -116. This analyte was not found in the samples at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte (non-detect vs 9.7-23 ug/kg) in the performance evaluation sample. The actual reporting limits for this analyte may be higher than the reported values.

1 Volatile TPH in Soil by GC/MS

Lab: RASP Contract Lab (Out-Source)

Method: Similar to Volatile TPH by GC/MS (see comments)

Basis: Dry

115-__ 116-__

RLAB Approved Analysis Comments

10/26/2015

Project ID: THDTLPA

Project Desc Tanglefoot Lane Site

Analysis	Comments	About Results	For This	Analysis
----------	----------	----------------------	----------	-----------------

Comments:

(N/A)

1 Herbicides in Water by GC/EC

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3240.23

Samples: 201-__ 202-_ 203-_ 203-FD 204-_ 205-_ 206-_

207-__ 211-FB 212-__

Comments:

Interferences can add to the results on one column that causes a poor quantitation match between the two columns or can 'mask' the analyte peak. In those cases, the sample results from the column without the interference is U-coded. The following results have been U-coded for this reason: Dicamba for samples 205 and 206.

1 Mercury - Dissolved, in Water

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 201-__ 202-__ 203-__ 203-FD 204-__ 205-__ 206-__

207-__ 211-FB 212-__

Comments:

(N/A)

1 Mercury in Water

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 201-__ 202-__ 203-__ 203-FD 204-__ 205-__ 206-__

207-__ 211-FB 212-__

Comments:

1 Metals - Dissolved, in Water by ICP/MS

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 201-__ 202-_ 203-__ 203-FD 204-__ 205-__ 206-__

207-__ 211-FB 212-__

Comments:

Slight arsenic contamination was found in the preparation and/or calibration blanks. Only samples containing this analyte at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained this analyte but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limit has been raised to the level found in the sample.

RLAB Approved Analysis Comments

10/26/2015

Project ID: THDTLPA

Project Desc Tanglefoot Lane Site

Analysis Comments About Results For This Analysis

Samples affected were: arsenic in -202 and -206.

1 Metals in Water by ICP/MS

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 201-__ 202-__ 203-__ 203-FD 204-__ 205-__ 206-__

207-__ 211-FB 212-__

Comments:

Slight arsenic contamination was found in the preparation and/or calibration blanks. Only samples containing this analyte at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained this analyte but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limit has been raised to the level found in the sample. Samples affected were: arsenic in -201, -205, -206, and -207.

1 Pesticides in Water by GC/EC

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 201-__ 202-__ 203-__ 203-FD 204-__ 205-__ 206-__

207-__ 211-FB 212-__

Comments:

1 Semi-Volatile Organic Compounds in Water

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3230.2H

Samples: 201-__ 202-__ 203-__ 203-FD 204-__ 205-__ 206-__

207-__ 211-FB 212-__

Comments:

Hexachloroethane and Hexachlorobutadiene were UJ-coded in samples 201 - 207, 203FD, 211FB and 212. These analytes were not found in the samples at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery (44% and 34%, respectively, with lower limits of 55% and 38%, respectively) of these analytes in the laboratory control sample. The actual reporting limit for these analytes may be higher than the reported value.

3,3'-Dichlorobenzidine was UJ-coded in sample 207. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to no (zero percent) recovery of this analyte in the laboratory matrix spike. The actual reporting limit for this analyte may be higher than the reported value.

Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene were UJ-coded in sample 207. These analytes were not found in the sample at or above the reporting

RLAB Approved Analysis Comments

10/26/2015

Project ID: THDTLPA

Project Desc Tanglefoot Lane Site

Analysis **Comments About Results For This Analysis**

limit, however, the reporting limit is an estimate (UJ-coded) due to poor precision (18%, 18% and 21%, respectively, with an upper limit of 12%, 15% and 14%, respectively) obtained for this analyte in the laboratory matrix spike and matrix spike duplicate. The actual reporting limit for these analytes may be higher than the reported value.

1 Semi-Volatile TPH (DRO & ORO) in Water by GC/FID

Lab: RASP Contract Lab (Out-Source)

Method: Similar to Modified version of SW846 Method 8015 (see comments)

203-___ Samples: 201-___ 202-203-FD 204-__ 205-206-207-211-FB 212-

Comments:

(N/A)

VOCs in Water by GC/MS for Low Detection Limits

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 201-__ 202-203-___ 203-FD 204-205-206-207-210-FB 211-FB 212-213-FB

Comments:

Samples -202 and -203FD were analyzed at dilutions appropriate to the constituent concentrations in the samples for this analysis. This increased the reporting limits by a factor of 70 times for sample -202; and by a factor of 1.7 times for sample -203FD.

Bromoform (control limits = $0.65 \mu g/L - 2.9 \mu g/L vs. 0.54 \mu g/L reported)$ was UJ-coded in samples -201 through -207, -212, -203FD, -210FB, -211FB and -213FB. This analyte was not found in the samples at or above the reporting limit; however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte in the PE sample. The actual reporting limit for this analyte may be higher than the reported value.

Volatile TPH in Water by GC/MS

Lab: RASP Contract Lab (Out-Source)

Method: Similar to Volatile TPH by GC/MS (see comments)

202-__ 206-**Samples:** 201-___ 203-203-FD 204-205- -

207-210-FB 211-FB 212-___ 213-FB

Comments:

(N/A)

RLAB Approved Sample Analysis Results

Project ID: THDTLPA

Analysis/ Analyte	Units	1	2	3	4
1 VOCs in Air at Ambient Levels by GC/MS					
Acetone	ug/m3	100	119000 U	5950 Ü	29.8 U
Benzene	ug/m3	4.15	8940	447	2.24
Bromodichloromethane	ug/m3	6.7 U	67000 U	3350 U	16.8 U
Bromoform	ug/m3	10.3 U	103000 U	5170 U	25.9 U
Bromomethane	ug/m3	3.88 U	38800 U	1940 U	9.7 U
2-Butanone	ug/m3	19.1	29400 U	1470 U	7.35 U
Carbon Disulfide	ug/m3	52.8	31200 U	1560 U	7.8 U
Carbon Tetrachloride	ug/m3	0.88	8200 U	440	2.05 U
Chlorobenzene	ug/m3	4.6 U	46000 U	2300 U	11.5 U
Chloroethane	ug/m3	2.64 U	110000	8940	8.04
Chloroform	ug/m3	41.7	48800 U	2440 U	12.2 U
Chloromethane.	ug/m3	2.06 U	20600 U	1030 U	5.15 U
Dibromochloromethane	ug/m3	8.52 Ú	85200 U	4260 U	21.3 U
1,2-Dibromoethane	ug/m3	7.68 U	76800 U	3840 U	19.2 U
1,2-Dichlorobenzene	ug/m3	6 U	60000 U	3000 U	15 U
1,3-Dichlorobenzene	ug/m3	6 U	60000 U	3000 U	15 U
1,1-Dichloroethane	ug/m3	4.04 U	40400 U	2270	10.1 U
1,2-Dichloroethane	ug/m3	0.405	4850	243	0.95 U
1,1-Dichloroethene	ug/m3	3.96 U	39600 U	1980 U	9.9 U
cis-1,2-Dichloroethene	ug/m3	3.96 U	789000	8800	60
trans-1,2-Dichloroethene	ug/m3	3.96 U	39600 U	1980 U	9.9 U
1,2-Dichloropropane	ug/m3	4.62 U	46200 U	2310 U	11.6 U
cis-1,3-Dichloropropene	ug/m3	4.54 U	45400 U	2270 U	11.4 U
trans-1,3-Dichloropropene	ug/m3	4.54 U	45400 U	2270 U	11.4 U
Ethyl Benzene	ug/m3	10.6	43400 U	2170 U	19.7
Heptane	ug/m3	10	79500	5160	23.6
Hexachlorobutadiene	ug/m3	10.7 U	107000 U	5330 U	26.7 U
Hexane	ug/m3	8.6	268000	35100	37. 9
2-Hexanone	ug/m3	4.1 U	41000 U	2050 U	10.3 U
Methylene Chloride	ug/m3	17.4 U	174000 U	8700 U	43.5 U
4-Methyl-2-Pentanone	ug/m3	4.1 U	41000 U	2050 U	10.3 U
Naphthalene	ug/m3	14.3 J	52400 U	2620 U	13.1 U
Styrene	ug/m3	4.26 U	42600 U	2130 U	10.7 U
1,1,2,2-Tetrachloroethane	ug/m3	6.86 U	68600 U	3430 U	17.2 U
Tetrachloroethene	ug/m3	3.39	9490	3660	10.2
Toluene	ug/m3	. 35	1330000	8780	634
1,2,4-Trichlorobenzene	ug/m3	7.42 U	74200 U	3710 U	18.6 U
1,1,1-Trichloroethane	ug/m3	5.46 U	54600 U	2730 U	13.7 U
1,1,2-Trichloroethane	ug/m3	0. 46 U	4600 U	230 U	1.15 U
Trichloroethene	ug/m3	1.4	8600 U	8760	16.7
1,1,2-Trichlorotrifluoroethane	ug/m3	7.66 U	76600 U	3830 U	19.2 U
1,2,4-Trimethylbenzene	ug/m3	35.5	49200 U	2460 U	68.3
1,3,5-Trimethylbenzene	ug/m3	8.75	49200 U	2460 U	29.2
Vinyl Chloride	ug/m3	0.32 U	1240000	2350	48.5
m and/or p-Xylene	ug/m3	48.5	86800 U	4340 U	75.3

RLAB Approved Sample Analysis Results

10/26/2015

23.7

Project ID: THDTLPA

Project Desc: Tanglefoot Lane Site

Analysis/ Analyte

Units 1-__ 2-__ 3-__ 4-__

o-Xylene

ug/m3 14.6 43400 U 2170 U

ASR Number: 6910 **RLAB Approved Sample Analysis Results**

Project ID: THDTLPA

Analysis/ Analyte	Units	5	6	7	9-FB
1 VOCs in Air at Ambient Levels by GC/MS					
Acetone	ug/m3	29800 U	476 U	24.3	5.95 U
Benzene	ug/m3	1550 U	24.8 U	1.02	0.31 U
Bromodichloromethane	ug/m3	16800 U	268 U	6.7 U	3.35 U
Bromoform	ug/m3	25900 U	414 U	10.3 U	5.17 U
Bromomethane	ug/m3	9700 U	155 U	3.88 U	1.94 U
2-Butanone	ug/m3	7350 U	118 U	3.6	1.47 U
Carbon Disulfide	ug/m3	7800 U	125 U	3.12 U	1.56 U
Carbon Tetrachloride	ug/m3	2050 U	32.8 U	1.26	0.41 U
Chlorobenzene	ug/m3	11500 U	184 U	4.6 U	2.3 U
Chloroethane	ug/m3	6600 U	106 U	8.28	1.32 U
Chloroform	ug/m3	12200 U	195 U	4.88 U	2.44 U
Chloromethane	ug/m3	5150 U	82.4 U	2.06 U	1.03 U
Dibromochloromethane	ug/m3	21300 U	341 U	8.52 U	4.26 U
1,2-Dibromoethane	ug/m3	19200 U	307 U	7.68 U	3.84 U
1,2-Dichlorobenzene	ug/m3	15000 U	240 U	6 U	3 U
1,3-Dichlorobenzene	ug/m3	15000 U	240 U	6 U	3 U
1,1-Dichloroethane	ug/m3	10100 U	162 U	4.04 U	2.02 U
1,2-Dichloroethane	ug/m3	950 U	15.2 ∪	0.405	0.19 U
1,1-Dichloroethene	ug/m3	24400	158 U	3.96 U	1.98 U
cis-1,2-Dichloroethene	ug/m3	24600	158 U	67.6	1.98 U
trans-1,2-Dichloroethene	ug/m3	9900 U	158 U	3.96 U	1.98 U
1,2-Dichloropropane	ug/m3	11600 U	185 U	4.62 U	2.31 U
cis-1,3-Dichloropropene	ug/m3	11400 U	182 U	4.54 U	2.27 U
trans-1,3-Dichloropropene	ug/m3	11400 U	182 U	4.54 U	2.27 U
Ethyl Benzene	ug/m3	10900 U	174 U	4.34 U	2.17 U
Heptane	ug/m3	10300 U	164 U	7.7	2.05 U
Hexachlorobutadiene	ug/m3	26700 U	426 U	10.7 U	5.33 U
Hexane	ug/m3	8800 U	141 U	26.1	1.87
2-Hexanone	ug/m3	10300 U	164 U	4.1 U	2.05 U
Methylene Chloride	ug/m3	43500 U	696 U	17.4 U	16.5
4-Methyl-2-Pentanone	ug/m3	10300 U	164 U	4.1 U	2.05 U
Naphthalene	ug/m3	13100 U	210 U	5.24 U	2.62 U
Styrene	ug/m3	10700 U	170 U	4.26 U	2.13 U
1,1,2,2-Tetrachloroethane	ug/m3	17200 U	274 U	6.86 U	3.43 U
Tetrachloroethene	ug/m3	41700	70.5	1.08	0.41 U
Toluene	ug/m3	9980	150 U	133	1.88 U
1,2,4-Trichlorobenzene	ug/m3	18600 U	297 U	7.42 U	3.71 U
1,1,1-Trichloroethane	ug/m3	545000	6330	5.46 U	2.73 U
1,1,2-Trichloroethane	ug/m3	1150 U	18.4 U	0.46 U	0.23 U
Trichloroethene	ug/m3	924000	3090	6.45	0.43 U
1,1,2-Trichlorotrifluoroethane	ug/m3	37900	1230	7.66 U	3.83 U
1,2,4-Trimethylbenzene	ug/m3	12300 U	197 U	4.92 U	2.46 U
1,3,5-Trimethylbenzene	ug/m3	12300 U	197 U	4.92 U	2.46 U
Vinyl Chloride	ug/m3	1530	12.8 U	84.4	0.16 U
m and/or p-Xylene	ug/m3	21700 U	347 U	8.68 U	4.34 U

RLAB Approved Sample Analysis Results

10/26/2015

Project ID: THDTLPA

Project Desc: Tanglefoot Lane Site

Analysis/ Analyte

Units

5-___

6-__

7-___

9-FB

o-Xylene

ug/m3

10900 U

174 U

4.34 U

2.17 U

ASR Number: 6910 **Project ID:** THDTLPA

TI PA

Analysis/ Analyte	Units	101	102	103	104
1 Herbicides in Soil by GC/EC					
2,4,5-T	ug/kg	13	11 U	24 U	16 U
2,4,5-TP	ug/kg	11 U	11 U	24 U	16 U
2,4-D	ug/kg	22 U	23 U	150	31 U
Dicamba	ug/kg	11 U	11 U	24 U	16 U
Pentachlorophenol	ug/kg	4.5 U	4.6 U	53	6.2 U
1 Mercury in Soil or Sediment Mercury	mg/kg	0.11 U	0.11 U	0.11 U	0.14 U
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	9430	5380	9700	5200
Antimony	mg/kg	6.2 U	6.0 U	6.0 U	6.7 U
Arsenic	mg/kg	9.3	7.4	7.9	3.6 U
Barium	mg/kg	103	124	70.1	76.1
Beryllium	mg/kg	0.90	0.50 U	0.64	0.56 U
Çadmium	mg/kg	0.51 U	0.50 U	5.3	1.4
Calcium	mg/kg	2170	2210	2740	7090
Chromium	mg/kg	16.0	12.2	19.3	11.7
Cobalt	mg/kg	23.8	9.7	9.4	5.6 UJ
Copper	mg/kg	27.3	16.4	24.4	20.0
Iron	mg/kg	27500	27900	23600	9950
Lead	mg/kg	11.1	8.8	86.2	116
Magnesium	mg/kg	1830	1600	1780	2970
Manganese	mg/kg	755	1940	247	115
Nickel	mg/kg	23.6	20.8	20.2	15.0
Potassium	mg/kg	515 U	498 U	636	563
Selenium	mg/kg	3.6 U	3.5 U	3.5 U	3.9 U
Silver	mg/kg	1.0 UJ	1.0 UJ	0.99 บม	1.1 UJ
Sodium	mg/kg	515 U	498 U	497 U	558 U
Thallium	mg/kg	2.6 UJ	2.5 UJ	_ 2.5 UJ	2.8 UJ
Vanadium	mg/kg	33.1	18.0	27.8	17.6
Zinc	mg/kg	36.1	38.1	129	83.8
1 Percent Solid			-		
Solids, percent	%	88.6	86.3	81.9	63.3
1 Pesticides in Soil by GC/EC					
Aldrin	ug/kg	1.9 U	2.1 U	2.1 U	3.0 U
Aroclor 1016	ug/kg	38 U	40 U	41 U	57 U
Aroclor 1221	ug/kg	38 U	40 U	41 U	57 U
Aroclor 1232	ug/kg	38 U	40 U	41 U	57 ∪
Aroclor 1242	ug/kg	38 ∪	40 U	41 U	57 U
Aroclor 1248	ug/kg	38 U	40 U	41 U	57 U
Aroclor 1254	ug/kg	38 U	40 U	.180	81
Arocior 1260	ug/kg	38 U	40 U	41 U	57 U
Aroclor 1262	ug/kg	38 U	40 U	41 U	57 U
Aroclor 1268	ug/kg	38 U	40 U	41 U	57 U
A-BHC	ug/kg	1.9 ປ	2.1 U	2.1 U	3.0 U
B-BHC	ug/kg	1.9 U	2.1 U	2.1 U	3.0 U
•					

ASR Number: 6910 RLAB Approved Sample Analysis Results

Project ID: THDTLPA

Analysis/ Analyte	Units	101	102	103	104
D-BHC	ug/kg	1.9 U	2.1 U	2.1 U	3.0 U
G-BHC	ug/kg	1.9 U	2.1 U	2.1 U	3.0 U
cis-Chlordane	ug/kg	1.9 U	2.1 U	2.1 U	3.0 U
trans-Chlordane	ug/kg	1.9 U	2.1 U	2.1 U	3.0 U
p,p'-DDD	ug/kg	3.8 U	4.0 U	4.6	8.5
p,p'-DDE	ug/kg	3.8 U	4.0 U	4.1 U	5.8 U
p,p'-DDT	ug/kg	3.8 U	4.0 U	4.1 U	5.8 U
Dieldrin	ug/kg	3.8 U	4.0 U	4.1 U	5.8 U
Endosulfan I	ug/kg	1.9 U	2.1 U	2.1 U	3.0 U
Endosulfan II	ug/kg	3.8 U	4.0 U	4.1 U	5.8 U
Endosulfan Sulfate	ug/kg	3.8 U	4.0 U	4.1 U	5.8 U
Endrin	ug/kg	3.8 U	4.0 U	4.1 U	5.8 U
Endrin Aldehyde	ug/kg	3.8 U	4.0 U	4.1 U	5.8 U
Endrin Ketone	ug/kg	3.8 U	4.0 U	4.1 U	5.8 U
Heptachlor	ug/kg	1.9 U	2.1 U	2.1 U	3.0 U
Heptachlor Epoxide	ug/kg	1.9 U	2.1 U	2.1 U	3.0 U
p,p'-Methoxychlor	ug/kg	19 U	21 U	21 U	30 U
Toxaphene	ug/kg	190 U	210 U	210 U	300 U
1 Semi-Volatile Organic Compounds in Soil					
Acenaphthene	ug/kg	190 U	200 U	220 U	290 U
Acenaphthylene	ug/kg	190 U	200 U	220 U	290 U
Acetophenone	ug/kg	370 U	3 9 0 U	420 UJ	570 U
Anthracene	ug/kg	190 U	200 U	220 U	290 U
Atrazine	ug/kg	370 U	390 U	420 U	570 U
Benzaldehyde	ug/kg	370 U	390 U	420 U	570 U
Benzo(a)anthracene	ug/kg	190 U	200 U	220 U	290 U
Benzo(a)pyrene	ug/kg	190 U	200 U	220 U	290 U
Benzo(b)fluoranthene	ug/kg	190 U	200 U	220 U	290 U
Benzo(g,h,i)perylene	ug/kg	190 U	200 U	220 U	290 U
Benzo(k)fluoranthene	ug/kg	190 U	200 U	220 U	290 U
Biphenyl	ug/kg	190 U	200 U	220 U	290 U
bis(2-Chloroethoxy)methane	ug/kg	190 U	200 U	220 U	290 U
bis(2-Chloroethyl)ether	ug/kg 	370 U	390 U	420 U	570 U
bis(2-Ethylhexyl)phthalate	ug/kg 	190 U	200 U	220 U	290 U
4-Bromophenyl-phenylether	ug/kg 	190 U	200 U	220 U	290 U
Butylbenzylphthalate	ug/kg 	190 U	200 U	220 U	290 U
Caprolactam	ug/kg 	370 U	390 U	420 UJ	570 U
Carbazole	ug/kg	370 U	390 U	420 U	570 U
4-Chloro-3-methylphenol	ug/kg	190 U	200 U	220 U	290 U
4-Chloroaniline	ug/kg	370 U	390 U	420 U	570 U
2-Chloronaphthalene	ug/kg	190 U	200 U	220 U	290 U
2-Chlorophenol	ug/kg	190 U	200 U	220 U	290 U
4-Chlorophenyl-phenylether	ug/kg	190 U	200 U	220 U	290 U
Chrysene	ug/kg	190 U	200 U	220 U	290 U
Di-n-butylphthalate	ug/kg	190 U	200 U	220 U	290 U

RLAB Approved Sample Analysis Results

Project ID: THDTLPA Project Desc: Tanglefoot Lane Site

Analysis/ Analyte	Units	101	102	103	104
Di a cabulahahalaha		270.11	390 U	420 U	570 U
Di-n-octylphthalate	ug/kg	370 U	200 U	420 U 220 U	290 U
Dibenz(a,h)anthracene	ug/kg	190 U	200 U	220 U	290 U
Dibenzofuran	ug/kg	190 U 370 U	390 U	420 U	570 U
3,3'-Dichlorobenzidine	ug/kg	190 U	200 U	420 U	290 U
2,4-Dichlorophenol Diethylphthalate	ug/kg ug/kg	190 U	200 U	220 U	290 U
2,4-Dimethylphenol	ug/kg ug/kg	190 U	200 U	220 U	290 U
Dimethylphthalate	ug/kg ug/kg	190 U	200 U	220 U	290 U
4,6-Dinitro-2-methylphenol	ug/kg ug/kg	370 U	390 U	420 U	570 U
2,4-Dinitrophenol	ug/kg	370 U	390 U	420 U	570 U
2,4-Dinitrotoluene	ug/kg ug/kg	190 U	200 U	220 U	290 U
2,6-Dinitrotoluene	ug/kg ug/kg	190 U	200 U	220 U	290 U
Fluoranthene	ug/kg	370 U	390 U	420 U	570 U
Fluorene	ug/kg ug/kg	190 U	200 U	220 U	290 U
Hexachlorobenzene	ug/kg	190 U	200 U	220 U	290 U
Hexachlorobutadiene	ug/kg	190 U	200 U	220 U	290 U
Hexachlorocyclopentadiene	ug/kg	370 U	390 U	420 U	570 U
Hexachloroethane	ug/kg	190 U	200 U	220 U	290 U
Indeno(1,2,3-cd)pyrene	ug/kg	190 U	200 U	220 U	290 U
Isophorone	ug/kg	190 U	200 U	220 U	290 U
2-Methylnaphthalene	ug/kg	190 U	200 U	220 U	290 U
2-Methylphenol	ug/kg	370 U	390 U	420 U	570 U
4-Methylphenol	ug/kg	370 U	390 U	420 U	570 U
Naphthalene	ug/kg	190 U	200 U	220 U	290 U
2-Nitroaniline	ug/kg	190 U	200 U	220 U	290 U
3-Nitroaniline	ug/kg	370 U	390 U	420 U	570 U
4-Nitroaniline	ug/kg	370 U	390 U	420 U	570 U
Nitrobenzene	ug/kg	190 U	200 U	220 U	290 U
2-Nitrophenol	ug/kg	190 U	200 U	220 U	290 U
4-Nitrophenol	ug/kg	370 U	390 U	420 U	570 U
N-nitroso-di-n-propylamine	ug/kg	190 U	200 U	220 U	290 U
N-nitrosodiphenylamine	ug/kg	190 U	200 U	220 U	290 U
Pentachlorophenol	ug/kg	370 U	390 U	420 U	570 U
Phenanthrene	ug/kg	190 U	200 U	220 U	290 U
Phenol	ug/kg	370 U	390 U	420 U	570 U
Pyrene	ug/kg	190 U	200 U	220 U	290 U
1,2,4,5-Tetrachlorobenzene	ug/kg	190 U	200 U	220 U	290 U
2,4,5-Trichlorophenol	ug/kg	190 U	200 U	220 U	290 U
2,4,6-Trichlorophenol	ug/kg	190 U	200 U	220 U	290 U
1 Semi-Volatile TPH (DRO & ORO) in Soil by G	C/FID				
TPH DRO	mg/kg	9.56 U	9.6 U	50 9	36.5
TPH ORO	mg/kg	76.6 U	76.9 U	666	95.4 U
1 VOC's in Soil at Low Levels by GC/MS Closed	d-System Pur	ge-and-Trap	•		
Acetone	ug/kg	49	49	960 U	27000
Benzene	u g/k g	5.9 U	4.7 U	480 U	8000 U

ASR Number: 6910 **Project ID:** THDTLPA

Bromochloromethane	Analysis/ Analyte	Units	101	102	103	104
Bromoform	Bromochloromethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
Bromomethane	Bromodichloromethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
2-Butanone	Bromoform	ug/kg	5.9 U	4.7 U	480 U	8000 U
Carbon Disulfide ug/kg 5.9 U 4.7 U 480 U 8000 U Carbon Tetrachloride ug/kg 5.9 U 4.7 U 480 U 8000 U Chloroberane ug/kg 5.9 U 4.7 U 480 U 8000 U Chloroform ug/kg 5.9 U 4.7 U 480 U 8000 U Chloroform ug/kg 5.9 U 4.7 U 480 U 8000 U Chloroform ug/kg 5.9 U 4.7 U 480 U 8000 U Cyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Lyclibromo-3-Chloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U Dibromochloromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,4-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorobethane ug/kg 5.9 U 4.7 U 480 U 8000 U	Bromomethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
Carbon Tetrachloride	2-Butanone	ug/kg	12 U	12	960 U	16000 U
Chlorobenzene	Carbon Disulfide	ug/kg	5.9 U	4,7 U	480 U	8000 U
Chloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Chloroform ug/kg 5.9 U 4.7 U 480 U 8000 U Chloromethane ug/kg 5.9 U 4.7 U 480 U 8000 U Cyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromochloromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromochloromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,4-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U	Carbon Tetrachloride	ug/kg	5.9 U	4.7 U	480 U	8000 U
Chloroform ug/kg 5.9 U 4.7 U 480 U 8000 U Chloromethane ug/kg 5.9 U 4.7 U 480 U 8000 U Cyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromo-3-Chloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromo-3-Chloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromochhane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromochhane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromochhane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorothane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorothane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorothane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorothane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorothane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorothane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorothane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorothane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorothane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1-Dichloropropan	Chlorobenzene	ug/kg	5.9 U	4.7 U	480 U	8000 U
Chloromethane ug/kg 5.9 U 4.7 U 480 U 8000 U Cyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromo-3-Chloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U Dibromochloromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromosthane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U	Chloroethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
Cyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromo-3-Chloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U Dibromochloromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromoethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,4-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U </td <td>Chloroform</td> <td>ug/kg</td> <td>5.9 U</td> <td>4.7 U</td> <td>480 U</td> <td>8000 U</td>	Chloroform	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,2-Dibromo-3-Chloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromochloromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromochlane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,4-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,4-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,4-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorochtane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorochtane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorochtane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorochtane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichlorochtene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichlorochtene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichlorochtene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichlorochtene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/	Chloromethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
Dibromochloromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dibromoethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,4-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,2-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U	Cyclohexane	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,2-Dibromoethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,4-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U tans-1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U tans-1,3-Dichloropropane ug/kg 5.9 U 4.7 U 480 U	1,2-Dibromo-3-Chloropropane	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,2-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,4-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Dichlorodifluoromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 5.9 U 4.7 U 480 U 8000 U	Dibromochloromethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,3-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,4-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Dichlorodifluoromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 5.9 U 4.7 U 480 U	1,2-Dibromoethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,4-Dichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Dichlorodifluoromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U	1,2-Dichlorobenzene	ug/kg	5.9 U	4.7 U	480 U	80 <u>00</u> U
Dichlorodifiluoromethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,2-Dichloroptopene ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U tthyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 5.9 U 4.7 U 480 U 8000 U Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000	1,3-Dichlorobenzene	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 5.9 U 4.7 U 480 U 8000 U 1sopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Cyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U	1,4-Dichlorobenzene	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,2-Dichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1-Dichloroethene ug/kg 5.9 UJ 4.7 UJ 480 UJ 8000 UJ cis-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 UJ trans-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 5.9 U 4.7 U 480 U 8000 U Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Lert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 800	Dichlorodifluoromethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,1-Dichloroethene ug/kg 5.9 UJ 4.7 UJ 480 UJ 8000 UJ cis-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 6700 230000 trans-1,2-Dichloropthene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 5.9 U 4.7 U 480 U 8000 U Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U	1,1-Dichloroethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
cis-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 6700 230000 trans-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 5.9 U 4.7 U 480 U 8000 U Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-Methyl-2-Pentanone ug/kg 5.9 U 4.7 U 480 U 8000 U	1,2-Dichloroethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
trans-1,2-Dichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 5.9 U 4.7 U 480 U 8000 U Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U <	1,1-Dichloroethene	ug/kg	5.9 UJ	4.7 UJ	480 UJ	8000 UJ
1,2-Dichloropropane ug/kg 5.9 U 4.7 U 480 U 8000 U cis-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 5.9 U 4.7 U 480 U 8000 U Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-Methyl-2-Pentanone ug/kg 5.9 U 4.7 U 480 U 8000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U	cis-1,2-Dichloroethene	ug/kg	5.9 U	4.7 U	6700	230000
cis-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U trans-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 12 U 9.4 U 960 U 16000 U Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-rethyl-2-Pentanone ug/kg 5.9 U 4.7 U 480 U 8000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U <td>trans-1,2-Dichloroethene</td> <td>ug/kg</td> <td>5.9 U</td> <td>4.7 U</td> <td>480 U</td> <td>8000 U</td>	trans-1,2-Dichloroethene	ug/kg	5.9 U	4.7 U	480 U	8000 U
trans-1,3-Dichloropropene ug/kg 5.9 U 4.7 U 480 U 8000 U Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 12 U 9.4 U 960 U 16000 U Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-Methyl-2-Pentanone ug/kg 5.9 U 4.7 U 480 U 8000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Toluene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,3-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U<	1,2-Dichloropropane	ug/kg	5.9 U	4.7 U	480 U	8000 U
Ethyl Benzene ug/kg 5.9 U 4.7 U 480 U 8000 U 2-Hexanone ug/kg 12 U 9.4 U 960 U 16000 U Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-Methyl-2-Pentanone ug/kg 5.9 U 4.7 U 480 U 8000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Toluene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,3-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U	cis-1,3-Dichloropropene	ug/kg	5.9 U	4.7 U	480 U	8000 U
2-Hexanone ug/kg 12 U 9.4 U 960 U 16000 U Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-Methyl-2-Pentanone ug/kg 5.9 U 4.7 U 480 U 8000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Tolluene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,4-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8	trans-1,3-Dichloropropene	ug/kg	5.9 ป	4.7 U	480 U	8000 U
Isopropylbenzene ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-Methyl-2-Pentanone ug/kg 5.9 U 4.7 U 480 U 8000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Tetrachloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U Toluene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U	Ethyl Benzene	ug/kg	5.9 U	4.7 U	480 U	8000 U
Methyl Acetate ug/kg 5.9 U 4.7 U 480 U 8000 U Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-Methyl-2-Pentanone ug/kg 12 U 9.4 U 960 U 16000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Tetrachloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U Toluene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U </td <td>2-Hexanone</td> <td>ug/kg</td> <td>12 U</td> <td>9.4 U</td> <td>960 U</td> <td>16000 U</td>	2-Hexanone	ug/kg	12 U	9.4 U	960 U	16000 U
Methyl tert-butyl ether ug/kg 5.9 U 4.7 U 480 U 8000 U Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-Methyl-2-Pentanone ug/kg 12 U 9.4 U 960 U 16000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,4-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U <	Isopropylbenzene	ug/kg	5.9 U	4.7 U	480 U	8000 U
Methylcyclohexane ug/kg 5.9 U 4.7 U 480 U 8000 U Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-Methyl-2-Pentanone ug/kg 12 U 9.4 U 960 U 16000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Tetrachloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,4-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U	Methyl Acetate	ug/kg	5.9 U	4.7 U	480 U	8000 U
Methylene Chloride ug/kg 5.9 U 4.7 U 480 U 8000 U 4-Methyl-2-Pentanone ug/kg 12 U 9.4 U 960 U 16000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Tetrachloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U Toluene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,4-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U	Methyl tert-butyl ether	ug/kg	5.9 U	4.7 U	480 U	8000 U
4-Methyl-2-Pentanone ug/kg 12 U 9.4 U 960 U 16000 U Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Tetrachloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U Toluene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,4-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U	Methylcyclohexane	ug/kg	5.9 U	4.7 U	480 U	8000 U
Styrene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Tetrachloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U Toluene ug/kg 5.9 U 4.7 U 1300 33000 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,4-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U	Methylene Chloride	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,1,2,2-Tetrachloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Tetrachloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U Toluene ug/kg 5.9 U 4.7 U 1300 33000 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,4-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 5000 U	4-Methyl-2-Pentanone	ug/kg	12 U	9.4 U	960 U	16000 U
Tetrachloroethene ug/kg 5.9 U 4.7 U 480 U 8000 U Toluene ug/kg 5.9 U 4.7 U 1300 33000 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,4-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 5000 U	Styrene	ug/kg	5.9 U	4.7 U	480 U	8000 U
Toluene ug/kg 5.9 U 4.7 U 1300 33000 1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,4-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 52000	1,1,2,2-Tetrachloroethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,2,3-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,2,4-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 52000	Tetrachloroethene	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,2,4-Trichlorobenzene ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 52000	Toluene	ug/kg	5.9 U	4.7 U	1300	33000
1,1,1-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U 1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 52000	1,2,3-Trichlorobenzene	ug/kg	5.9 U	4.7 U	480 U	8000 U
1,1,2-Trichloroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Trichloroethene ug/kg 5.9 U 4.7 U 480 U 52000	1,2,4-Trichlorobenzene	ug/kg	5.9 U	4.7 U	480 U	8000 U
Trichloroethene ug/kg 5.9 U 4.7 U 480 U 52000	1,1,1-Trichloroethane	ug/kg	5.9 U	4.7 U	480 U	√8000 U
	1,1,2-Trichloroethane	ug/kg	5.9 U	4.7 U	480 U	8000 U
Trichlorofluoromethane ug/kg 5.9 U 4.7 U 480 U 8000 U	Trichloroethene	ug/kg	5.9 บ	4.7 U	480 U	52000
	Trichlorofluoromethane	ug/kg	5.9 U	4.7 U	480 U	8000 U

Project ID: THDTLPA

RLAB Approved Sample Analysis Results

10/26/2015

Project Desc: Tanglefoot Lane Site

Analysis/ Analyte Units 101-___ 102-___ 103-___ 104-___ 1,1,2-Trichlorotrifluoroethane ug/kg 5.9 U 4.7 U 480 U 8000 U Vinyl Chloride ug/kg 5.9 U 4.7 U 480 U 35000 m and/or p-Xylene ug/kg 5.9 U 4.7 U 480 U 8000 U o-Xylene ug/kg 5.9 U 4.7 U 480 U 8000 U 1 Volatile TPH in Soil by GC/MS TPH GRO mg/kg 2.13 U 2.04 U 12.3 53.7

Page 19 of 58

ASR Number: 6910 Project ID: THDTLPA

Analysis/ Analyte	Units	105	106	106-FD	107
1 Herbicides in Soil by GC/EC					
2,4,5-T	ug/kg	16 U	12 U	12 U	11 U
2,4,5-TP	ug/kg	16 U	12 U	12 U	11 U
2,4-D	ug/kg	95 U	160 U	48 U	22 U
Dicamba	ug/kg	21	12 U	12 U	11 U
Pentachlorophenol	ug/kg	9.4	66 J	28	4.3 U
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.15 U	0.14	0.12	0.0 9 7 U
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	8240	3560	3540	4490
Antimony	mg/kg	9.2 U	6.9 U	5.9 ป	5.2 U
Arsenic	mg/kg	5.3	4.9	7.3	5.4
Barium	mg/kg	113	72.1	67.8	64.9
Beryllium	mg/kg	0.77 U	0.58 U	0.49 U	0.47
Cadmium	mg/kg	1.4	2.2	2.4	0.43 U
Calcium	mg/kg	9230	11300	5500	1140 U
Chromium	mg/kg	32.0	20.8	25.7	8.6
Cobalt	mg/kg	8.9	6,1	7.2	7.2
Copper	mg/kg	34.5	48.5	66.4	12.1
Iron	mg/kg	21800	26100	38200	15500
Lead	mg/kg	199	193	143	8.2 J
Magnesium	mg/kg	4530	5340	1620	782
Manganese	mg/kg	235	281	298	719
Nickel	mg/kg	26.9	14.8	20.3	14.6
Potassium	mg/kg	770 U	577 U	490 U	430 U
Selenium	mg/kg	5.4 U	4.0 U	4.3 U	3.0 U
Silver	mg/kg	1.5 UJ	1.2 UJ	0.98 UJ	0.86 ÚJ
Sodium	mg/kg	770 U	577 U	490 U	430 U
Thallium	mg/kg	3.9 UJ	2.9 UJ	2.5 UJ	2.2 UJ
Vanadium	mg/kg	23.6	6.6	4.9	17.2
Zinc	mg/kg	159	218	231	26.5
1 Percent Solid					
Solids, percent	%	61.9	84.2	84.7	92,3
1 Pesticides in Soil by GC/EC					
Aldrin	ug/kg	3.0 ∪	2.0 U	2.0 U	1.9 U
Aroclor 1016	ug/kg	60 U	39 U	39 U	36 U
Aroclor 1221	ug/kg	60 U	39 U	39 U	36 U
Aroclor 1232	ug/kg	60 U	39 U	39 U	36 U
Aroclor 1242	ug/kg	60 U	39 U	39 U	36 U
Aroclor 1248	ug/kg	60 U	39 U	39 U	36 U
Aroclor 1254	ug/kg	180	890	1500	36 U
Aroclor 1260	ug/kg	60 U	39 U	39 U	36 U
Aroclor 1262	ug/kg	60 U	39 U	39 U	36 U
Aroclor 1268	ug/kg	60 U	39 U	39 U	36 U
A-BHC	ug/kg	3.0 U	2.0 U	2.0 U	1.9 U
B-BHC	ug/kg	3.0 U	2.0 U	2.0 U	1.9 U

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	105	106	106-FD	107
D BUC	ua (ka	. 2011	2011	2.0 U	1.9 U
D-BHC	ug/kg	3.0 U	2.0 U	2.0 0	
G-BHC	ug/kg	3.0 U	2.0 U	•	1.9 U
cis-Chlordane trans-Chlordane	ug/kg	3.0 U	2.0 U 2.0 U	2.0 U 6.3	1.9 U 1.9 U
	ug/kg	3.0 U	2.0 U	و.ع 7.9	3.6 U
p,p'-DDD p,p'-DDE	ug/kg ug/kg	5.9 U 5.9 U	3.9 U	7.9 3.8 U	3.6 U
p,p'-DDT	ug/kg ug/kg	5.9 U	3.9 U	3.8 U	3.6 U
Dieldrin	ug/kg ug/kg	5.9 U	3.9 U	13	3.6 U
Endosulfan I	ug/kg ug/kg	3.0 U	2.0 U	2:0 U	1.9 U
Endosulfan II	ug/kg	5.9 U	3.9 U	3.8 U	3.6 U
Endosulfan Sulfate	ug/kg ug/kg	5.9 Ù	3.9 U	3.8 U	3.6 U
Endrin	ug/kg ug/kg	5.9 U	3.9 U	3.8 U	3.6 U
Endrin Aldehyde	ug/kg ug/kg	5.9 U	3.9 U	3.8 U	3.6 U
Endrin Ketone	ug/kg	5.9 U	3.9 U	3.8 U	3.6 U
Heptachlor	ug/kg	3.0 U	2.0 U	2.0 U	1.9 U
Heptachlor Epoxide	ug/kg	3.0 U	2.0 U	6,1	1.9 U
p,p'-Methoxychlor	ug/kg	30 U	20 U	20 U	19 U
Toxaphene	ug/kg	300 U	200 U	200 U	190 U
Semi-Volatile Organic Compounds in Soil	29 / Ng	300 0	200 0	200 5	250 0
Acenaphthene	ug/kg	310 U	1100 U	670 U	190 U
Acenaphthylene	ug/kg	310 U	1100 U	670 U	190 U
Acetophenone	ug/kg	590 U	2100 UJ	1300 UJ	360 U
Anthracene	ug/kg	310 U	1100 U	670 U	190 U
Atrazine	ug/kg	590 U	2100 U	1300 U	360 U
Benzaldehyde	ug/kg	590 U	2100 U	1300 U	360 U
Benzo(a)anthracene	ug/kg	310 U	1100 U	670 U	190 U
Benzo(a)pyrene	ug/kg	310 U	1100 U	670 U	190 U
Benzo(b)fluoranthene	ug/kg	310 U	1100 U	670 U	190 U
Benzo(g,h,i)perylene	ug/kg	310 U	1100 U	670 U	190 U
Benzo(k)fluoranthene	ug/kg	310 U	1100 U	670 U	190 U
Biphenyl	ug/kg	310 U	1100 U	670 ป	190 U
bis(2-Chloroethoxy)methane	ug/kg	310 U	1100 U	670 U	190 U
bis(2-Chloroethyl)ether	ug/kg	590 U	2100 U	1300 U	360 U
bis(2-Ethylhexyl)phthalate	ug/kg	410	12000	6000	970
4-Bromophenyl-phenylether	ug/kg	310 U	1100 U	670 U	190 U
Butylbenzylphthalate	ug/kg	310 U	1100 U	670 U	190 U
Caprolactam	ug/kg	590 U	2100 UJ	1300 UJ	360 U
Carbazole	ug/kg	590 U	2100 U	1300 U	360 U
4-Chloro-3-methylphenol	ug/kg	310 U	1100 U	670 U	190 U
4-Chloroaniline	ug/kg	590 U	2100 U	1300 U	360 U
2-Chloronaphthalene	ug/kg	310 U	1100 U	670 ป	190 U
2-Chlorophenol	ug/kg	310 U	1100 U	670 U	190 U
4-Chlorophenyl-phenylether	ug/kg	310 U	1100 U	670 U	190 U
Chrysene	ug/kg	310 U	1100 U	670 U	190 U
Di-n-butylphthalate	ug/kg	310 U	1100 U	670 U	190 U

ASR Number: 6910 Project ID: THDTLPA

Analysis/ Analyte	Units	105	106	106-FD	107
Di-n-octylphthalate	ug/kg	590 U	2100 U	1300 U	3,60 U
Dibenz(a,h)anthracene	ug/kg	310 U	1100 U	670 U	190 U
Dibenzofuran	ug/kg	310 U	1100 U	670 U	190 U
3,3'-Dichlorobenzidine	ug/kg	590 U	2100 U	1300 U	360 U
2,4-Dichlorophenol	ug/kg	310 U	1100 U	670 U	190 U
Diethylphthalate	ug/kg	310 U	1100 U	670 U	190 U
2,4-Dimethylphenol	ug/kg	310 U	1100 U	670 U	190 U
Dimethylphthalate	ug/kg	310 U	1100 U	670 U	190 U
4,6-Dinitro-2-methylphenol	ug/kg	590 U	2100 U	1300 U	∙360 U
2,4-Dinitrophenol	ug/kg	590 U	2100 U	1300 U	360 U
2,4-Dinitrotoluene	ug/kg	310 U	1100 U	670 U	190 U
2,6-Dinitrotoluene	ug/kg	310 U	1100 U	670 U	190 U
Fluoranthene	ug/kg	590 U	2100 U	1300 U	360 U
Fluorene	ug/kg	310 U	1100 U	670 U	190 U
Hexachlorobenzene	ug/kg	310 U	1100 U	670 U	190 U
Hexachlorobutadiene	ug/kg	310 U	1100 U	670 U	190 U
Hexachlorocyclopentadiene	ug/kg	590 U	2100 U	1300 U	360 U
Hexachloroethane	ug/kg	310 U	1100 U	670 U	190 U
Indeno(1,2,3-cd)pyrene	ug/kg	310 U	1100 U	670 U	190 U
Isophorone	ug/kg	310 U	1100 Ų	670 U	190 U
2-Methylnaphthalene	ug/kg	310 U	1100 U	670 U	190 U
2-Methylphenol	ug/kg	590 U	2100 U	1300 U	360 U
4-Methylphenol	ug/kg	590 U	2100 U	1300 U	360 U
Naphthalene	ug/kg	310 U	1100 U	670 U	190 U
2-Nitroaniline	ug/kg	310 U	1100 U	670 U	190 U
3-Nitroaniline	ug/kg	590 U	2100 U	1300 U	360 U
4-Nitroaniline	ug/kg	5 <u>9</u> 0 U	2100 U	1300 U	360 U
Nitrobenzene	ug/kg	310 U	1100 U	670 U	190 U
2-Nitrophenol	ug/kg	310 U	1100 U	670 U	190 U
4-Nitrophenol	ug/kg	590 U	2100 U	1300 U	360 U
N-nitroso-di-n-propylamine	ug/kg	310 U	1100 U	670 U	190 U
N-nitrosodiphenylamine	ug/kg	310 U	1100 U	670 U	190 U
Pentachlorophenol	ug/kg	590 U	2100 U	1300 U	360 U
Phenanthrene	ug/kg	310 U	1100 U	670 U	190 U
Phenol	ug/kg	590 U	2100 U	1300 U	360 U
Pyrene	ug/kg	310 U	1100 U	670 U	190 U
1,2,4,5-Tetrachlorobenzene	ug/kg	310 U	1100 U	670 U	190 U
2,4,5-Trichlorophenol	ug/kg	310 U	1100 U	670 U	190 U
2,4,6-Trichlorophenol	ug/kg	310 U	1100 U	670 U	190 U
1 Semi-Volatile TPH (DRO & ORO) in Soil by	GC/FID				
TPH DRO	mg/kg	39.7	231		9.04 U
TPH ORO	mg/kg	123	591		72.4 U
1 VOC's in Soil at Low Levels by GC/MS Clos	sed-System Pur	ge-and-Trap			
Acetone	ug/kg	3000	3100	98	54
Benzene	ug/kg	690 U	390 U	31	5.7 U

ASR Number: 6910
Project ID: THDTLPA

Analysis/ Analyte	Units	105	106	106-FD	107
Bromochloromethane	ua/ka	690 U	390 U	5.2 U	5.7 U
Bromodichloromethane	ug/kg ug/kg	690 U	390 U	5.2 U	5.7 U
Bromoform	ug/kg	690 U	390 U	5.2 UJ	5.7 U
Bromomethane	. ug/kg	690 U	390 U	5.2 U	5.7 U
2-Butanone	ug/kg	1400 U	790 U	19	11 U
Carbon Disulfide	ug/kg ug/kg	690 U	390 U	5.2 U	5.7 U
Carbon Tetrachloride	ug/kg	690 U	390 U	5.2 U	5.7 U
Chlorobenzene	ug/kg	690 U	· 390 U	5.2 U	5.7 U
Chloroethane	ug/kg	690 U	390 U	53	5.7 U
Chloroform	ug/kg	690 U	390 U	5.2 U	5.7 U
Chloromethane	ug/kg	690 U	390 U	5.2 U	5.7 U
Cyclohexane	ug/kg	690 U	390 U	97	5.7 U
1,2-Dibromo-3-Chloropropane	ug/kg	690 U	390 U	5.2 UJ	5.7 U
Dibromochloromethane	ug/kg	690 U	390 U	5.2 U	5.7 U
1,2-Dibromoethane	ug/kg	690 U	390 U	5.2 U	5.7 U
1,2-Dichlorobenzene	ug/kg	690 U	390 U	5.2 UJ	5.7 U
1,3-Dichlorobenzene	ug/kg	690 U	390 U	5.2 UJ	5.7 U
1,4-Dichlorobenzene	ug/kg	690 U	390 U	5.2 UJ	5.7 U
Dichlorodifluoromethane	ug/kg	690 U	390 U	5.2 U	5.7 U
1,1-Dichloroethane	ug/kg	690 U	390 U	5.2 U	5.7 U
1,2-Dichloroethane	ug/kg	690 U	390 U	5.2 U	5.7 U
1,1-Dichloroethene	ug/kg	690 UJ	390 UJ	5.2 UJ	5.7 UJ
cis-1,2-Dichloroethene	ug/kg	11000	390 U	150	5.7 U
trans-1,2-Dichloroethene	ug/kg	690 U	390 U	5.2 U	5.7 U
1,2-Dichloropropane	ug/kg	690 U	390 U	5.2 U	5.7 U
cis-1,3-Dichloropropene	ug/kg	690 U	390 U	5.2 U	5.7 U
trans-1,3-Dichloropropene	ug/kg	690 U	390 U	5.2 U	5.7 U
Ethyl Benzene	ug/kg	690 U	390 U	5.2 U	5.7 U
2-Hexanone	ug/kg	1400 U	790 U	10 U	11 U
Isopropylbenzene	ug/kg	690 U	390 U	5.2 U	5.7 U
Methyl Acetate	ug/kg	690 U	390 U	5.2 U	5.7 U
Methyl tert-butyl ether	ug/kg	690 U	390 U	5.2 U	5.7 U
Methylcyclohexane	ug/kg	690 U	390 U	140	5.7 U
Methylene Chloride	ug/kg	690 U	390 U	5.2 U	5.7 U
4-Methyl-2-Pentanone	ug/kg	1400 U	790 U	10 U	11 U
Styrene	ug/kg	690 U	390 U	5.2 U	5.7 U
1,1,2,2-Tetrachloroethane	ug/kg	690 U	390 U	5.2 U	5.7 U
Tetrachloroethene	ug/kg	690 U	960	43	5.7 U
Toluene	ug/kg	690 U	470	100	5.7 U
1,2,3-Trichlorobenzene	ug/kg	690 U	390 U	5.2 UJ	5.7 U
1,2,4-Trichlorobenzene	ug/kg	690 U	390 U	5.2 UJ	5.7 U
1,1,1-Trichloroethane	ug/kg	690 U	390 U	5.2 U	5.7 U
1,1,2-Trichloroethane	ug/kg	690 U	390 U	5.2 U	5.7 U
Trichloroethene	ug/kg	690 U	1100	50	5.7 U
Trichlorofluoromethane	ug/kg	690 U	390 U	5.2 U	5.7 U

RLAB Approved Sample Analysis Results

10/26/2015

Project ID: THDTLPA

Analysis/ Analyte	Units	105	106	106-FD	107
1,1,2-Trichlorotrifluoroethane	ug/kg	690 U	390 U	5.2 U	5.7 U
Vinyl Chloride	ug/kg	3000	390 U	5.2 U	5.7 U
m and/or p-Xylene	ug/kg	690 U	390 U	5.2 U	5.7 U
o-Xylene	ug/kg	690 U	390 U	5.2 U	5.7 U
1 Volatile TPH in Soil by GC/MS TPH GRO	mg/kg	21.8	2.32 U		2.24 U

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	108	109	110	111
1 Herbicides in Soil by GC/EC					
2,4,5-T	ug/kg	12 U	11 U	12 U	11 U
2,4,5-TP	ug/kg	12 U	11 U	12 U	11 U
2,4-D	ug/kg	· 23 U	22 U	24 U	21 U
Dicamba	ug/kg	12 U	11 U	12 U	11 U
Pentachlorophenol	ug/kg	4.7 U	4.5 U	4.8 U	4.3 U
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.10 U	0.10 U	0.11 U	0.12 U
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	1900	8140	5470	5350
Antimonÿ	mg/kg	6.1 U	5.8 U	5.8 U	6.8 U
Arsenic	mg/kg	1.7 U	8.5	3.5 U	10.3
Barium .	mg/kg	22.1	103	60.3	93.3
Beryllium	mg/kg	0.51 U	0.59	0.49 U	0.57 U
Cadmium	mg/kg	0.51 U	0.48 U	0.49 U	0.57 U
Calcium	mg/kg	807 U	14300	48900	1220 U
Chromium	mg/kg	7.0	15.3	11.6	13.4
Cobalt	mg/kg	5.6	8.5	4.9 UJ	18.5
Copper	mg/kg	6.6	16.6	10.7	13.1
Iron	mg/kg	8310	17800	11700	15100
Lead	mg/kg	7.4 J	11.5	6.0 UJ	11.0
Magnesium	mg/kg	520	9360	26800	1100
Manganese	mg/kg	213	503	298	1260
Nickel	mg/kg	12.0	23.2	10.5	23.5
Potassium	mg/kg	512 U	542	487 U	569 U
Selenium	mg/kg	3.6 U	3.4 U	3.4 U	4.0 U
Silver	mg/kg	1.0 UJ	0.96 UJ	0.97 UJ	1.1 UJ
Sodium	mg/kg	512 U	479 U	487 U	569 U
Thailium	mg/kg	2.6 UJ	2.4 UJ	3.1 J	2.8 UJ
Vanadium	mg/kg	14.0	26.4	20.0	23.9
Zinc	mg/kg	12.1	38.6	26.2	27.3
1 Percent Solid					
Solids, percent	%	85.0	89.1	83.7	92.8
1 Pesticides in Soil by GC/EC			-		
Aldrin	ug/kg	2.0 U	2.0 U	2.0 U	1.9 U
Aroclor 1016	ug/kg	38 U	38 U	39 U	37 U
Aroclor 1221	ug/kg	38 U	38 U	39 U	37 U
Aroclor 1232	ug/kg	38 U	38 U	39 U	37 U
Aroclor 1242	ug/kg	38 U	38 U	39 U	37 U
Aroclor 1248	ug/kg	38 U	38 U	39 U	37 U
Aroclor 1254	ug/kg	38 U	420	39 ⊍	37 U
Aroclor 1260	ug/kg	38 U	38 U	39 U	37 U
Aroclor 1262	ug/kg	38 U	38 U	39 U	37 U
Aroclor 1268	ug/kg	38 U	38 U	39 U	37 U
A-BHC	ug/kg	2.0 U	2.0 U	2.0 U	1.9 U
В-ВНС	ug/kg	2.0 U	2.0 U	2.0 U	1.9 U

Project ID: THDTLPA

ASR Number: 6910

Project Desc: Tanglefoot Lane Site

108-109-___ 110-Analysis/ Analyte **Units** 111-___ 2.0 U 2.ტ ს 1.9 U 2.0 U D-BHC ug/kg 2.0 U 2.0 U G-BHC 2.0 U 1.9 U ug/kg 2.0 U 2.0 U cis-Chlordane ug/kg 2.0 U 1.9 U trans-Chlordane ug/kg 2.0 U 2.0 U 2.0 U 1.9 U 4.0 U 3.8 U 4.0 U 3.6 U p.p'-DDD ug/kg p,p'-DDE ug/kg 4.0 U 6.8 4.0 U 3.6 U 4.0 U p,p'-DDT 4.0 U 3.8 U 3.6 U ug/kg 4.0 U 4.0 U 6.1 3.6 U Dieldrin ug/kg Endosulfan I ug/kg 2.0 U 2.0 U 2.0 U 1.9 U 4.0 U 3.8 U 4.0 U 3.6 U Endosulfan II ug/kg Endosulfan Sulfate ug/kg 4.0 U 3.8 U 4.0 U 3.6 U 3.6 U Endrin ug/kg 4.0 U 3.8 U 4.0 U 4.0 U 3.6 U Endrin Aldehyde ug/kg 4.0 U 3.8 U 4.0 U 3.8 U 4.0 U 3.6 U Endrin Ketone ug/kg 2.0 U 2.0 U 1.9 U Heptachlor ug/kg 2.0 U 2.0 U 2.0 U 2.0 U 1.9 U Heptachlor Epoxide ug/kg 20 U 20 U 20 U 19 U p,p'-Methoxychlor ug/kg Toxaphene ug/kg 200 U 200 U 200 U 190 U 1 Semi-Volatile Organic Compounds in Soil 190 U 200 U 190 U Acenaphthene ug/kg 200 U 200 U 190 U 200 U 190 U Acenaphthylene ug/kg 380 U 370 U 390 U 360 U Acetophenone ug/kg 200 U 190 U 200 U 190 U Anthracene ug/kg 370 U 390 U Atrazine ug/kg 380 U 360 U 370 Ú 390 U 360 U 380 U Benzaldehyde ug/kg 200 U 200 U 190 U Benzo(a)anthracene ug/kg 190 U 200 U 190 U 200 U 190 U ug/kg Benzo(a)pyrene ug/kg 200 U 190 U 200 U 190 U Benzo(b)fluoranthene ug/kg 200 U 190 U 200 U 190 U Benzo(g,h,i)perylene 200 U 190 U Benzo(k)fluoranthene ug/kg 200 U 190 U 190 U 200 U 190 U Biphenyl ug/kg 200 U 200 U 190 U 200 U 190 U bis(2-Chloroethoxy)methane ug/kg 380 U 370 U 390 U 360 U bis(2-Chloroethyl)ether ug/kg bis(2-Ethylhexyl)phthalate ug/kg 200 U 1900 200 U 190 U 4-Bromophenyl-phenylether ug/kg 200 U 190 U 200 U 190 U 200 U Butylbenzylphthalate ug/kg 200 U 190 U 190 U 380 U 370 U 390 U 360 U Caprolactam ug/kg 380 U 370 U 390 U 360 U Carbazole ug/kg 200 U 190 U 200 U 190 U 4-Chloro-3-methylphenol ug/kg 370 U 390 U 360 U 4-Chloroaniline ug/kg 380 U 200 U 2-Chloronaphthalene ug/kg 200 U 190 U 190 U 190 U 200 U 190 U 2-Chlorophenol ug/kg 200 U 200 U 190 U 200 U 190 U 4-Chlorophenyl-phenylether ug/kg ug/kg 200 U 190 U 200 U 190 U Chrysene 190 U Di-n-butylphthalate ug/kg 200 U 190 U 200 U

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	108	109	110	111
Di-n-octylphthalate	uġ/kg	380 U	370 U	390 U	360 U
Dibenz(a,h)anthracene	ug/kg	200 U	190 U	200 U	190 U
Dibenzofuran	ug/kg	200 U	190 U	200 U .	190 U
3,3'-Dichlorobenzidine	ug/kg	380 U	370 U	390 U	360 U
2,4-Dichlorophenol	ug/kg	200 U	190 U	200 U	190 U
Diethylphthalate	ug/kg	200 U	190 U	200 U	190 U
2,4-Dimethylphenol	ug/kg	200 U	190 U	200 U	190 U
Dimethylphthalate	ug/kg	200 U	190 U	200 U	190 U
4,6-Dinitro-2-methylphenol	ug/kg	380 U	370 U	390 U	360 U
2,4-Dinitrophenol	ug/kg	380 U	370 U	390 U	360 U
2,4-Dinitrotoluene	ug/kg	200 U	190 U	200 U	190 U
2,6-Dinitrotoluene	ug/kg	200 U	190 U	200 U	190 U
Fluoranthene	ug/kg	380 U	370 U	390 U	360 U
Fluorene	ug/kg	200 U	190 U	200 U	190 U
Hexachlorobenzene	ug/kg	200 U	190 U	200 U	190 U
Hexachlorobutadiene	ug/kg	200 U	1 9 0 U	200 U	190 U
Hexachlorocyclopentadiene	ug/kg	380 U	370 U	390 U	360 U
Hexachloroethane	ug/kg	200 U	190 U	200 U	. 190 U
Indeno(1,2,3-cd)pyrene	. ug/kg	200 U	190 U	200 U	190 U
Isophorone	ug/kg	200 U	190 U	200 U	190 U
2-Methylnaphthalene	ug/kg	200 U	190 U	200 U	190 U
2-Methylphenol	ug/kg	380 U	370 U	390 U	360 U
4-Methylphenoi	ug/kg	380 U	370 U	390 U	360 U
Naphthalene	ug/kg	200 U	190 U	200 U	190 U
2-Nitroaniline	ug/kg	200 U	190 U	200 U	190 U
3-Nitroaniline	ug/kg	380 U	370 U	390 U	360 U
4-Nitroaniline	ug/kg	380 U	370 U	390 U	360 U
Nitrobenzene	ug/kg	200 U	190 U	200 U	190 U
2-Nitrophenol	ug/kg	200 U	190 U	200 U	190 U
4-Nitrophenol	ug/kg ု	380 U	370 U	390 U	360 U
N-nitroso-di-n-propylamine	ug/kg	200 U	190 U	200 U	190 U
N-nitrosodiphenylamine	ug/kg	200 U	190 ປ	200 U	190 U
Pentachlorophenol	ug/kg	380 U	370 U	390 U	360 U
Phenanthrene	ug/kg	200 U	1 9 0 U	200 U	190 U
Phenol	ug/kg	380 U	370 U	390 U	360 U
Pyrene	ug/kg	200 U	190 U	200 U	190 U
1,2,4,5-Tetrachlorobenzene	ug/kg	2 <u>00</u> U	190 U	200 U	190 U
2,4,5-Trichlorophenol	ug/kg	200 U	190 U	200 U	190 U
2,4,6-Trichlorophenol	ug/kg	200 U	190 U	200 U	190 U
1 Semi-Volatile TPH (DRO & ORO) in Soil	by GC/FID				
TPH DRO	mg/kg	9.91 U	9.42 U	9.94 U	9.12 U
TPH ORO	mg/kg	79.4 U	75.4 U	79.6 U	73 U
1 VOC's in Soil at Low Levels by GC/MS C	Closed-System Pur	ge-and-Trap			
Acetone	ug/kg	23	87	1900	83
Benzene	ug/kg	5.7 U	5.8 U	290 U	5.5 U

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	108	109	110	111
Bromochloromethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Bromodichloromethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Bromoform	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Bromomethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
2-Butanone	ug/kg	11 U	23	570 U	14
Carbon Disulfide	ug/kg	5.7 Û	5.8 U	290 U	5.5 U
Carbon Tetrachloride	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Chlorobenzene	ug/kg	5.7 U	5.8 U	290 U	5.5 U ¯
Chloroethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Chloroform	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Chloromethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Cyclohexane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,2-Dibromo-3-Chloropropane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Dibromochloromethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,2-Dibromoethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,2-Dichlorobenzene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,3-Dichlorobenzene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,4-Dichlorobenzene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Dichlorodifluoromethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,1-Dichloroethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,2-Dichloroethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,1-Dichloroethene	ug/kg	5.7 UJ	5.8 UJ	290 UJ	5.5 UJ
cis-1,2-Dichloroethene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
trans-1,2-Dichloroethene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,2-Dichloropropane	ug/kg	5.7 U	5.8 U ,	290 U	5.5 U
cis-1,3-Dichloropropene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
trans-1,3-Dichloropropene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Ethyl Benzene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
2-Hexanone	ug/kg	11 U	12 U	570 U	11 U
Isopropylbenzene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Methyl Acetate	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Methyl tert-butyl ether	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Methylcyclohexane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Methylene Chloride	ug/kg	5.7 U	5.8 U	290 U	5.5 U
4-Methyl-2-Pentanone	ug/kg	11 U	12 U	570 U	11 U
Styrene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,1,2,2-Tetrachloroethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Tetrachloroethene	ug/kg	5.7 U	26	290 U	5.5 U
Toluene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,2,3-Trichlorobenzene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,2,4-Trichlorobenzene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1,1,1-Trichloroethane	ug/kg	5.7 U	65	320	5.5 U
1,1,2-Trichloroethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Trichloroethene	ug/kg	5.7 U	100	2200	5.5 U
Trichlorofluoromethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U

RLAB Approved Sample Analysis Results

10/26/2015

Project ID: THOTLPA

Analysis/ Analyte	Units	108	109	110	111
1,1,2-Trichlorotrifluoroethane	ug/kg	5.7 U	5.8 U	290 U	5.5 U
Vinyl Chloride	ug/kg	5.7 U	5.8 U	290 U	5.5 U
m and/or p-Xylene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
o-Xylene	ug/kg	5.7 U	5.8 U	290 U	5.5 U
1 Volatile TPH in Soil by GC/MS			•		
TPH GRO	mg/kg	2.68 U	2.72 U	2.23 U	2.23 U

ASR Number: 6910 **Project ID:** THDTLPA

Analysis/ Analyte	Units	112	113	114	114-FD
1 Herbicides in Soil by GC/EC					
2,4,5-T	ug/kg	12 U	14 U	14 U	14 U
2,4,5-TP	ug/kg	12 U	14 U	14 U	14 U
2,4-D	ug/kg	24 U	29 U	29 U	29 U
Dicamba	ug/kg	12 U	14 U	14 U	14 U
Pentachlorophenol	ug/kg	4.7 U	5.8 U	5.7 U	5.7 U
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.12 U	0.12 U	0.14 U	0.13 U
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	8900	8730	4550	5000
Antimony	mg/kg	6.3 U	7.7 U	6.8 U	7.2 U
Arsenic	mg/kg	5.6	7.1	10.8	9.2
Barium	mg/kg	87.2	145	107	123
Beryllium	mg/kg	0.65	0.64 U	0.56 U	0.60 U
Cadmium	mg/kg	0.52 ป	0.64 U	0.56 U	0.60 U
Calcium	mg/kg	13700	23800	56900	27600
Chromium	mg/kg	15.8	15.7	10.9	11.4
Cobalt	mg/kg	. 12.1	7.9	9.6	9.5
Copper	mg/kg	15.1	18.4	13.2	13.7
Iron	mg/kg	13700	17400	18800	17200
Lead	mg/kg	10.5	14.6	19.1	19.3
Magnesium	mg/kg	8000	6090	29600	8770
Manganese	mg/kg	584	552	851	530
Nickel	mg/kg	16.7	17.7	14.8	15.8
Potassium	mg/kg	524 U	785	563 U	601 U
Selenium	mg/kg	3.7 U	4.5 U	3.9 U	4.2 U
Silver	mg/kg	1.0 UJ	1.3 UJ	1.1 UJ	1.2 ⊍J
Sodium	mg/kg	524 U	639 U	563 U	- 601 U
Thallium	mg/kg	2.6 UJ	3.2 UJ	2.9 J	3.0 UJ
Vanadiüm	mg/kg	24.7	26.1	23.3	25.1
Zinc	mg/kg	30.6	61.1	32.6	37.1
1 Percent Solid					
Solids, percent	%	82.0	69.1	69.0	68.1
1 Pesticides in Soil by GC/EC					
Aldrin	ug/kg	2.1 U	2.4 U	2.2 U	2.5 ⊍
Aroclor 1016	ug/kg	41 U	47 U	43 U	47 U
Aroclor 1221	ug/kg	41 U	4 7 U	43 U	47 U
Aroclor 1232	ug/kg	41 U	47 U	43 U	4 7 U
Aroclor 1242	ug/kg	41 U	47 U	43 U	47 U
Aroclor 1248	ug/kg	41 U	47 U	43 U	47 U
Aroclor 1254	ug/kg	41 U	47 U	43 U	47 U
Aroclor 1260	ug/kg	41 U	47 U	43 U	47 U
Aroclor 1262	ug/kg	41 U	47 U	· 43 U	47 U
Aroclor 1268	ug/kg	41 U	47 U	43 U	47 U
A-BHC	ug/kg	2.1 U	2.4 U	2.2 U	2.5 U
B-BHC	ug/kg	2.1 U	2.4 U	2.2 U	2.5 U

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	112	113	114	114-FD
D-BHC	ug/kg	2.1 U	2.4 U	2.2 U	2.5,U
G-BHC	ug/kg	2.1 U	2.4 U	2.2 U	2.5 U
cis-Chlordane	ug/kg	2.1 U	2.4 U	2.2 U	2.5 U
trans-Chlordane	ug/kg	2.1 U	2.4 U	2.2 U	2.5 U
p,p'-DDD	ug/kg	4.0 U	4.7 U	4.2 U	4.8 U
p,p'-DDE	ug/kg	4.0 U	4.7 U	4.2 U	4.8 U
p,p'-DDT	ug/kg	4.0 U	4.7 U	4.2 U	4.8 U
Dieldrin	ug/kg	4.0 U	4.7 U	4.2 U	4.8 U
Endosulfan I	ug/kg	2.1 U	2.4 U	2.2 U	2.5 U
Endosulfan II	ug/kg	4.0 U	4.7 U	4.2 U	4.8 U
Endosulfan Sulfate	ug/kg	4.0 U	4.7 U	4.2 U	4.8 U
Endrin	ug/kg	4.0 U	4.7 U	4.2 U	4.8 U
Endrin Aldehyde	ug/kg	4.0 U	4.7 U	4.2 U	4.8 U
Endrin Ketone	ug/kg	4.0 U	4.7 U	4.2 U	4.8 U
Heptachlor	ug/kg	2.1 U	2.4 U	2.2 U	2.5 U
Heptachlor Epoxide	úg/kg	2.1 U	2.4 U	2.2 U	2.5 U
p,p'-Methoxychlor	ug/kg	21 U	24 U	22 U	25 U
Toxaphene	ug/kg	210 U	240 U	220 U	250 U
1 Semi-Volatile Organic Compounds in Soil					
Acenaphthene	ug/kg	210 U	260 U	230 U	250 U
Acenaphthylene	ug/kg	210 U	260 U	230 U	250 U
Acetophenone	ug/kg	410 U	500 UJ	440 UJ	480 UJ
Anthracene	ug/kg	210 U	260 U	230 U	250 U
Atrazine	ug/kg	410 U	500 U	440 U	480 U
Benzaldehyde	ug/kg	410 U	500 U	44 0 U	480 U
Benzo(a)anthracene	ug/kg	210 U	260 U	230 U	250 U
Benzo(a)pyrene	ug/kg	210 U	260 U	230 U	250 U
Benzo(b)fluoranthene	ug/kg	210 U	260 U	230 U	300
Benzo(g,h,i)perylene	ug/kg	210 U	260 U	230 U	250 U
Benzo(k)fluoranthene	ug/kg	210 U	260 U	230 U	250 U
Biphenyl	ug/kg	210 U	260 U	230 U	250 U
bis(2-Chloroethoxy)methane	ug/kg	210 U	260 U	230 U	250 U
bis(2-Chloroethyl)ether	ug/kg	410 U	500 U	440 U	480 U
bis(2-Ethylhexyl)phthalate	ug/kg	210 U	260 U	230 U	250 U
4-Bromophenyl-phenylether	ug/kg	210 U	260 U	230 U	250 U
Butylbenzylphthalate	ug/kg	210 U	260 U	230 U	250 U
Caprolactam	ug/kg	410 U	500 U3	440 UJ	480 UJ
Carbazole	ug/kg	410 U	500 U	440 U	480 U
4-Chloro-3-methylphenol	ug/kg	210 U	260 U	230 U	250 U
4-Chloroaniline	ug/kg	410 U	500 U	440 U	480 U
2-Chloronaphthalene	ug/kg	210 U	260 U	230 U	250 U
2-Chlorophenol	ug/kg	210 U	260 U	230 U	250 U
4-Chlorophenyl-phenylether	ug/kg	210 U	260 U	230 U	250 U
Chrysene	ug/kg	210 U	260 U	230 U	250 U
Di-n-butylphthalate	ug/kg	210 U	260 U	230 U	250 U

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	112	113	114	114-FD
Di-n-octylphthalate	ug/kg 、	410 U	500 U	440 U	480 U
Dibenz(a,h)anthracene	ug/kg	210 U	260 U	230 U	250 U
Dibenzofuran	ug/kg	210 U	260 U	230 U	250 U
3,3'-Dichlorobenzidine	ug/kg	410 U	500 U	440 U	·480 U
2,4-Dichlorophenol	ug/kg	210 U	260 U	230 U	250 U
Diethylphthalate	ug/kg	210 U	260 U	230 U	250 U
2,4-Dimethylphenol	ug/kg	210 U	260 U	230 U	250 U
Dimethylphthalate	ug/kg	210 U	260 U	230 U	250 U
4,6-Dinitro-2-methylphenol	· ug/kg	410 U	500 U	440 U	480 U
2,4-Dinitrophenol	ug/kg	410 U	500 U	440 U	480 U
2,4-Dinitrotoluene	ug/kg	210 U	260 U	230 U	250 U
2,6-Dinitrotoluene	ug/kg	210 U	260 U	230 U	250 U
Fluoranthene	ug/kg	410 U	500 U	440 U	480 U
Fluorene	ug/kg	210 U	260 U	230 U	250 U
Hexachlorobenzene	ug/kg	210 U	260 U	230 U	250 U
Hexachlorobetadiene	ug/kg	210 U	260 U	230 U	250 U
Hexachlorocyclopentadiene	ug/kg	410 U	500 U	440 U	480 U
Hexachloroethane	ug/kg	210 U	260 U	230 U	250 U
Indeno(1,2,3-cd)pyrene	ug/kg	210 U	260 U	230 U	250 U
Isophorone	ug/kg	210 U	260 U	230 U	250 U
·	ug/kg ug/kg	210 U	260 U	230 U	250 U
2-Methylnaphthalene		410 U	500 U	440 U	480 U
2-Methylphenol	ug/kg	410 U	500 U	440 U	480 U
4-Methylphenol	ug/kg	210 U	260 U	230 U	250 U
Naphthalene	ug/kg	210 U	260 U	230 U	250 U
2-Nitroaniline	ug/kg	410 U	500 U	440 U	480 U
3-Nitroaniline	ug/kg	410 U	500 U	440 U	480 U
4-Nitroaniline	ug/kg	210 U	260 U	230 U	250 U
Nitrobenzene	ug/kg	210 U	260 U	230 U	250 U
2-Nitrophenol	ug/kg			· · ·	
4-Nitrophenol	ug/kg	410 U	500 U	440 U	480 U
N-nitroso-di-n-propylamine	ug/kg	210 U	260 U	230 U	250 U
N-nitrosodiphenylamine	ug/kg	210 U	260 U	230 U	250 U
Pentachlorophenol	ug/kg	410 U	500 U	440 U	480 U 250 U
Phenanthrene	ug/kg	210 U	260 U	230 U	
Phenol	ug/kg	410 U	500 U	440 U	480 U
Pyrene	ug/kg	210 U	260 U	230 U	420
1,2,4,5-Tetrachlorobenzene	ug/kg	210 U	260 U	230 U	250 U
2,4,5-Trichlorophenol	ug/kg "	210 U	260 U	230 U	250 U
2,4,6-Trichlorophenol	ug/kg	210 U	260 U	230 U	250 U
1 Semi-Volatile TPH (DRO & ORO) in Soil b TPH DRO	y GC/FID mg/kg	10.2 U	11.9 U	11.5 U	
TPH ORO	mg/kg	81.7 U	95.6 U	92 U	
			93.00	92 0	
1 VOC's in Soil at Low Levels by GC/MS Clo Acetone	ug/kg	ge-and-Trap 1400	86	58	170 J
Benzene	ug/kg	330 U	8.6 U	6.5 U	17 U
DELIEGIE	ug/kg	330 0	3.0 0	0.5 0	1, 0

ASR Number: 6910 Project ID: THDTLPA

Analysis/ Analyte	Units	112	113	114	114-FD
Bromochloromethane	ug/kg	330 U	8.6 U	6.5 U	17 U
Bromodichloromethane	ug/kg	330 U	8.6 U	6.5 U	•
Bromoform	ug/kg	330 U	8.6 U	6.5 U	17 U
Bromomethane	ug/kg	330 U	8.6 U	6.5 U	17 U
2-Butanone	ug/kg	660 U	17	13 U	33 U
Carbon Disulfide	ug/kg	330 U	8.6 U	57	81
Carbon Tetrachloride	ug/kg	330 U	8.6 U	6.5 U	17 ⊍
Chlorobenzene	ug/kg	330 U	8.6 U	6.5 U	17 U
Chloroethane	ug/kg	330 U	8.6 Ú	6.5 U	17 Ü
Chloroform	ug/kg	330 U	8.6 U	6.5 U	17 U
Chloromethane	ug/kg	330 U	8,6 U	6.5 Ų	17 U
Cyclohexane	ug/kg	330 U	8.6 U	6.5 U	17 U
1,2-Dibromo-3-Chloropropane	ug/kg	330 U	8.6 U	6.5 U	17 U
Dibromochloromethane	ug/kg	330 U	8.6 U	6.5 U	17 U
1,2-Dibromoethane	ug/kg	330 U	8.6 U	6.5 U	17 U
1,2-Dichlorobenzene	ug/kg	330 U	8.6 U	6.5 U	17 U
1,3-Dichlorobenzene	ug/kg	330 U	8.6 U	6.5 U	17 U
1,4-Dichlorobenzene	ug/kg	330 U	8.6 U	6.5 U	17 U
Dichlorodifluoromethane	ug/kg	330 U	8.6 U	6.5 U	17 U
1,1-Dichloroethane	ug/kg	330 U	8.6 U	6.5 U	17 U
1,2-Dichloroethane	ug/kg	330 U	8.6 U	6.5 U	17 U
1,1-Dichlöroethene	ug/kg	330 UJ	8.6 UJ	6.5 UJ	17 UJ
cis-1,2-Dichloroethene	ug/kg	330 U	8.6 U	6.5 U	17 U
trans-1,2-Dichloroethene	ug/kg	330 U	8.6 U	6.5 U	17 U
1,2-Dichloropropane	ug/kg	330 U	· 8.6 U	6.5 U	17 U
cis-1,3-Dichloropropene	ug/kg	330 U	8.6 U	6.5 U	17 U
trans-1,3-Dichloropropene	ug/kg 	330 U	8.6 U	6.5 U	17 U
Ethyl Benzene	ug/kg 	330 U	8.6 U	6.5 U	17 U
2-Hexanone	ug/kg	660 U	17 U	13 U	33 U
Isopropylbenzene	ug/kg	330 U	8.6 U	6.5 U	17 U
Methyl Acetate	ug/kg	330 U	8.6 U	6.5 U	17 U
Methyl tert-butyl ether	ug/kg	330 U	8.6 U	6.5 U	17 U
Methylogo Chlorida	ug/kg	330 U 330 U	8.6 U 8.6 U	6.5 U 6.5 U	17 U 17 U
Methylene Chloride 4-Methyl-2-Pentanone	ug/kg	660 Ú	17 U	13 U	33 U
	ug/kg ug/kg	330 U	8.6 U	6.5 U	17 U
Styrene 1,1,2,2-Tetrachloroethane	ug/kg ug/kg	330 U	8.6 U	6.5 U	17 U
Tetrachloroethene	ug/kg ug/kg	330 U	8.6 U	6.5 U	17 U
Toluene	ug/kg	330 U	8.6 U	6.5 U	17 U
1,2,3-Trichlorobenzene	ug/kg	330 U	8.6 U	6.5 U	17 U
1,2,4-Trichlorobenzene	ug/kg	330 U	8.6 U	6.5 U	17 U
1,1,1-Trichloroethane	ug/kg	380	8.6 U	6.5 U	17 U
1,1,2-Trichloroethane	ug/kg	330 U	8.6 U	6.5 Ú	17 U
Trichloroethene	ug/kg	460	8.6 U	6.5 U	17 U
Trichlorofluoromethane	ug/kg	330 U	8.6 U	6.5 U	17 U
	<u> </u>				

RLAB Approved Sample Analysis Results

10/26/2015

Project ID: THDTLPA

Analysis/ Analyte	Units	112	113	114	114-FD
1,1,2-Trichlorotrifluoroethane	ug/kg	33 <u>0</u> U	8.6 U	6.5 U	17 U
Vinyl Chloride	ug/kg	330 U	8.6 Ų	6.5 U	17 U
m and/or p-Xylene	ug/kg	330 U	8.6 U	6.Ś U	17 U
o-Xylene	ug/kg	330 U	8.6 U	6.5 U	17 U
1 Volatile TPH in Soil by GC/MS TPH GRO	mg/kg	2.2 <u>2</u> U	3.01 U	2.6 U	

RLAB Approved Sample Analysis Results

Project ID: THDTLPA

Analysis/ Analyte	Units	115	116	201	202
1 Herbicides in Soil by GC/EC					
2,4,5-T	ug/kg	15 U	13 U		
2,4,5-TP	ug/kg	15 U	13 U		
2,4-D	ug/kg	30 U	27 U		
Dicamba	ug/kg	15 U	13 U		
Pentachlorophenol	ug/kg	5.9 ป	5.4 U		
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.15 U	0.14 U		
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	7680	6080		
Antimony	mg/kg	8.5 UJ	6.9 U		
Arsenic ⁻	mg/kg	9.0	7,0		٠
Barlum	mg/kg	128	103		
Beryllium	mg/kg	0.71 U	0.57 U		
Cadmium	mg/kg	0.71 U	0.57 U		
Calcium	mg/kg	21700	10700		
Chromium	mg/kg	13.7	11.8		
Cobalt	mg/kg	7.1 UJ	9.2		
Copper	mg/kg	17.1	13.6		
Iron	mg/kg	16300	13900		
Lead	mg/kg	14.1 J	15.7		
Magnesium	mg/kg	10300	4880		
Manganese	mg/kg	599	688		
Nickel	mg/kg	15.9	14.8		
Potassium	mg/kg	1110	579		
Selenium	mg/kg	5.0 U	4.0 U		
Silver	mg/kg	1.4 UJ	1.1 UJ		
Sodium	mg/kg	711 U	573 U		
Thallium	mg/kg	3.6 UJ	2.9 UJ		
Vanadium	mg/kg	24.2	22.4		
Zinc	mg/kg	56.6	47.0		
1 Percent Solid					
Solids, percent	%	65.8	73.9		
1 Pesticides in Soil by GC/EC					
Aldrin	ug/kg	. 2.5 U	2.4 U		
Aroclor 1016	ug/kg	48 U	47 U		
Aroclor 1221	ug/kg	48 U	47 U		
Aroclor 1232	ug/kg	48 U	47 U		
Aroclor 1242	ug/kg	48 U	47 [°] U		
Aroclor 1248	ug/kg	48 U	47 U		
Aroclor 1254	ug/kg	48 U	47 U		
Aroclor 1260	ug/kg	48 U	47 U		
Aroclor 1262	ug/kg	48 U	47 U		
Aroclor 1268	ug/kg	48 U	47 U		•
A-BHC	ug/kg	2.5 ป	2.4 U		
B-BHC	ug/kg	2.5 U	2.4 U		

RLAB Approved Sample Analysis Results

Project ID: THDTLPA

Analysis/ Analyte	Units	115	116	201	202
D-BHC	ug/kg	2.5 U	2.4 U		
G-BHC	ug/kg	2.5 U	2.4 U		
cis-Chlordane	ug/kg	2.5 U	2.4 U		
trans-Chlordane	ug/kg	2.5 U	2.4 U		
p,p'-DDD	ug/kg	4.9 U	4.7 U		
p,p'-DDE	ug/kg	4.9 U	4.7 U		
p,p'-DDT	ug/kg	4.9 U	4.7 U		•
Dieldrin	ug/kg	4.9 U	4.7 U		
Endosulfan I	ug/kg	2 <u>.</u> 5 U	2.4 U		
Endosulfan II	ug/kg	4.9 U	4.7 U		
Endosulfan Sulfate	ug/kg	4.9 U	4.7 U		
Endrin	ug/kg	4.9 U	4.7 U		
Endrin Aldehyde	ug/kg	4.9 U	4.7 U		
Endrin Ketone	ug/kg	4.9 U	4.7 U		
Heptachlor	ug/kg	2.5 U	2.4 U		
Heptachlor Epoxide	ug/kg	2.5 U	2.4 U		
p,p'-Methoxychlor	ug/kg	25 U	24 U		
Toxaphene	ug/kg	250 U	240 U		
1 Semi-Volatile Organic Compounds in Soil					
Acenaphthene	ug/kg	260 U	230 U		
Acenaphthylene	ug/kg	260 U	230 U		
Acetophenone	ug/kg	500 UJ	450 U		•
Anthracene	ug/kg	260 U	230 U		
Atrazine	ug/kg	500 U	450 U		
Benzaldehyde	ug/kg	500 U	450 U		
Benzo(a)anthracene	ug/kg	260 U	230 U		
Benzo(a)pyrene	ug/kg	260 U	230 U		
Benzo(b)fluoranthene	ug/kg 	260 U	310		
Benzo(g,h,i)perylene	ug/kg	260 U	. 230 U		
Benzo(k)fluoranthene	ug/kg	260 U	230 U		
Biphenyl	ug/kg	260 U	230 U		
bis(2-Chloroethoxy)methane	üg/kg	260 U	230 U	•	
bis(2-Chloroethyl)ether	ug/kg	500 U	450 U		
bis(2-Ethylhexyl)phthalate	ug/kg	260 U	230 U		
4-Bromophenyl-phenylether	ug/kg	260 U 260 U	230 U 230 U		
Butylbenzylphthalate	ug/kg	500 UJ	450 U		
Caprolactam Carbazole	ug/kg ug/kg	500 U	450 U		
	ug/kg ug/kg	260 U	230 U		
4-Chloro-3-methylphenol 4-Chloroaniline	ug/kg ug/kg	500 U	450 U		
2-Chloronaphthalene	ug/kg ug/kg	260 U	230 U		
2-Chlorophenol	ug/kg ug/kg	260 U	230 U		
4-Chlorophenyl-phenylether	ug/kg	260 U	230 U		
Chrysene	ug/kg ug/kg	260 U	230		
Di-n-butylphthalate	ug/kg	260 U	230 U		
z zacy ipriciolaca	-312	200 3			•

ASR Number: 6910 **Project ID:** THDTLPA

Analysis/ Analyte	Units	115	116	201	202
Di-n-octylphthalate	ug/kg	500 U	450 U		
Dibenz(a,h)anthracene	ug/kg	260 U	230 U		
Dibenzofuran	ug/kg	260 U	230 U		
3,3'-Dichlorobenzidine	ug/kg	500 U	450 U		
2,4-Dichlorophenol	ug/kg	260 U	230 U		
Diethylphthalate	ug/kg	260 U	230 U		
2,4-Dimethylphenol	ug/kg	260 U	230 U		
Dimethylphthalate	ug/kg	260 U	230 U		
4,6-Dinitro-2-methylphenol	ug/kg	500 U	450 U		
2,4-Dinitrophenol	ug/kg	500 U	450 U		
2,4-Dinitrotoluene	ug/kg	260 U	230 U		
2,6-Dinitrotoluene	ug/kg	260 U	230 U		
Fluoranthene	ug/kg	500 U	450 U		
Fluorene	ug/kg	260 U	230 U		
Hexachlorobenzene	ug/kg	260 U	230 U		
Hexachlorobutadiene	ug/kg	260 U	230 U		
Hexachlorocyclopentadiene	ug/kg	500 U	450 U		
Hexachloroethane	ug/kg	260 U	230 U		
Indeno(1,2,3-cd)pyrene	ug/kg	260 U	230 U		
Isophorone	ug/kg	260 U	230 U		
2-Methylnaphthalene	ug/kg	260 U	230 U		
2-Methylphenol	ug/kg	500 U	450 U		
4-Methylphenol	ug/kg	500 U	450 U		
Naphthalene	ug/kg	260 U	230 U		
2-Nitroaniline	ug/kg	260 U	230 U		
3-Nitroaniline	ug/kg	500 U	450 U		
4-Nitroaniline	ug/kg	500 U	450 U		
Nitrobenzene	ug/kg	260 U	230 U		
2-Nitrophenol	ug/k g	260 U	230 U		
4-Nitrophenol	ug/kg	500 U	450 U		
N-nitroso-di-n-propylamine	ug/kg	260 U	230 U		
N-nitrosodiphenylamine	ug/kg	260 U	230 U		
Pentachlorophenol	ug/kg	500 U	450 U		
Phenanthrene	ug/kg	260 U	230 U		
Phenol	ug/kg	500 U	450 U		
Pyrene	ug/kg	260 U	350		
1,2,4,5-Tetrachlorobenzene	uġ/kg	260 U	230 U		
2,4,5-Trichlorophenol	ug/kg	260 U	230 U		
2,4,6-Trichlorophenol	ug/kg	260 U	230 U		
1 Semi-Volatile TPH (DRO & ORO) in Soil by	GC/FID		•		
TPH DRO	mg/kg	12.6 U	11.7 U		
TPH ORO	mg/kg	101 U	93.6 U		
1 VOC's in Soil at Low Levels by GC/MS Clos	sed-System Pur	ge-and-Trap			
Acetone	ug/kg	180	130		
Benzene	ug/kg	12 U	8.9 U		

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	115	116	201	202
Bromochloromethane	ug/kg	12 U	8.9 U		
Bromodichloromethane	ug/kg	12 U	8.9 U		
Bromoform	ug/kg	12 U	8.9 UJ		
Bromomethane	ug/kg	12 U	8.9 U		
2-Butanone	ug/kg	27	18 U		
Carbon Disulfide	ug/kg	12 U	15		
Carbon Tetrachloride	ug/kg	12 U	8.9 U		
Chlorobenzene	ug/kg	12 U	8.9 U		
Chloroethane	ug/kg	12 U	8.9 U		
Chloroform	ug/kg	12 U	8.9 U		
Chloromethane	ug/kg	· 12 U	8.9 U		
Cyclohexane	ug/kg	12 U	8.9 U		
1,2-Dibromo-3-Chloropropane	ug/kg	12 U	8.9 UJ		
Dibromochloromethane	ug/kg	12 U	8.9 U		
1,2-Dibromoethane	ug/kg	12 U	8.9 U		
1,2-Dichlorobenzene	ug/kg	12 U	8.9 UJ		
1,3-Dichlorobenzene	ug/kg	12 U	8.9 UJ		
1,4-Dichlorobenzene	ug/kg	12 U	8.9 UJ		
Dichlorodifluoromethane	ug/kg	12 U	8.9 U		
1,1-Dichloroethane	ug/kg	12 U	8.9 U		
1,2-Dichloroethane	ug/kg	12 U	8.9 U		
1,1-Dichloroethene	ug/kg	12 UJ	8.9 UJ		
cis-1,2-Dichloroethene	ug/kg	12 U	8.9 U		
trans-1,2-Dichloroethene	ug/kg	12 U	8.9 U		
1,2-Dichloropropane	ug/kg	12 U	8.9 U		
cis-1,3-Dichloropropene	ug/kg	12 U	8.9 U		
trans-1,3-Dichloropropene	ug/kg	12 U	8.9 U		
Ethyl Benzene	ug/kg	12 U	8.9 U		
2-Hexanone	ug/kg	25 U	18 U		
Isopropylbenzene	ug/kg	12 U	8.9 U		
Methyl Acetate	ug/kg 	12 U	8.9 U		
Methyl tert-butyl ether	ug/kg 	12 U	8.9 U		•
Methylcyclohexane	ug/kg	12 U	8.9 U		
Methylene Chloride	ug/kg	12 U	8.9 U		
4-Methyl-2-Pentanone	ug/kg	25 U	18 U		
Styrene	ug/kg	12 U	8.9 U		
1,1,2,2-Tetrachloroethane	ug/kg	12 U	8.9 U		
Tetrachloroethene	ug/kg	12 U 14	8.9 U 8.9 U		
Toluene	ug/kg	14 12 U	8.9 UJ		
1,2,3-Trichlorobenzene	ug/kg	12 U	8.9 UJ		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	ug/kg ug/kg	12 U	8.9 U		
1,1,2-Trichloroethane	ug/kg ug/kg	12 U	8.9 U		
Trichloroethene	ug/kg ug/kg	12 U	8.9 U		
Trichlorofluoromethane	ug/kg ug/kg	12 U	8.9 U		
menoronationalic	09/ Ng	12.0	3.50		

RLAB Approved Sample Analysis Results

10/26/2015

Project ID: THDTLPA

Analysis/ Analyté	Units	115	116	201	202
1,1,2-Trichlorotrifluoroethane	ug/kg	12 U	8.9 U		
Vinyl Chloride	ug/kg	12 U	8.9 U		
m and/or p-Xylene	ug/kg	12 U	8.9 U		
o-Xylene	ug/kg	12 U	8.9 U		
1 Volatile TPH in Soil by GC/MS TPH GRO	mg/kg	3.89 U	3.01 U		
1 Herbicides in Water by GC/EC	mg/ kg	3.07 0	5.01 0		
2,4,5-T	ug/L			0.050 U	0.050 U
2,4,5-TP	ug/L			0.050 U	0.050 U
2,4-D	ug/L			0.10 U	0.10 U
Dicamba	ug/L			0.050 U	0.050 U
Pentachlorophenol	ug/L			0.020 U	0.057
	ug/ L			0.020 0	0.037
1 Mercury - Dissolved, in Water Mercury	ug/L			0.20 U	0.20 U
1 Mercury in Water	ug/ L			0.20 0	0.20 0
Mercury	ug/L			0.20 U	0.20 U
	ug/L			0.20 0	0.20 0
1 Metals - Dissolved, in Water by ICP/MS Antimony	ug/L			2.0 U	2.0 U
Arsenic	ug/L			1.0 U	2.2 U
Barium	ug/L ug/L			88.8	103
Beryllium	ug/L			1.0 U	1.0 U
Cadmium	ug/L ug/L			1.0 U	1.0 U
Chromium	ug/L ug/L			2.0 U	2.0
Cobalt	ug/L ug/L			1.0 U	1.0 U
Copper	ug/L ug/L			2.0 U	2.0 U
Lead	ug/L ug/L	•		1.0 U	2.0 0
Manganese				22.2	452
Nickel	ug/L ug/L			2.1	3.6
Selenium				5.0 U	5.0 U
Silver	ug/L			1.0 U	1.0 U
Thallium	ug/L			1.0 U	1.0 U
	ug/L			5.0 U	5.0 U
Vanadium Zinc	ug/L			4.4	19.7
	ug/L			7.4	19.7
1 Metals in Water by ICP/MS	/1			2.0 U	2.0 U
Antimony Arsenic	ug/L			3.4 U	16.7
Barium	ug/L			112	178
Beryllium	ug/L			1.0 U	1.0 U
Cadmium	ug/L			1.0 U	1.0 U
Chromium	ug/L			15.7	20.9
1	ug/L			8.9	12.0
Cobalt	ug/L				20.1
Copper	ug/L			14.6 19.8	
Lead	ug/L				20.0
Manganese	ug/L			151	787 24.7
Nickel	ug/L			20.1	24.7

RLAB Approved Sample Analysis Results

Project ID: THDTLPA

Analysis/ Analyte	Units	115	116	201	202
Selenium	ug/L			5.0 U	5.0 U
Silver	ug/L			1.0 U	1.0 U
Thallium	ug/L			1.0 U	1.0 ∪
Vanadium	ug/L			27.7	26.6
Zinc	ug/L			45.4	72.5
1 Pesticides in Water by GC/EC					
Aldrin	ug/L			0.050 U	0.050 U
Aroclor 1016	ug/L			1.0 U	1.0 U
Aroclor 1221	ug/L			1.0 U	1.0 U
Aroclor 1232	ug/L			1.0 U	1.0 U
Aroclor 1242	ug/L			1.0 U	1.0 U
Aroclor 1248	ug/L			1.0 U	1.0 U
Aroclor 1254	ug/L			1.0 U	1.0 U
Aroclor 1260	ug/L			1.0 U	1.0 U
Aroclor 1262	ug/L			1.0 U	1.0 U
Aroclor 1268	ug/L			1.0 U	1.0 U
A-BHC	ug/L			0.050 U	0.050 U
B-BHC	ug/L			0.050 U	0.050 U
D-BHC	ug/L			0.050 U	0.050 U
G-BHC	ug/L			0.050 U	0.050 U
cis-Chlordane	ug/L			0.050 U	0.050 U
trans-Chlordane	ug/L			0.050 U	0.050 U
p,p'-DDD	ug/L			0.10 U	0.10 U
p,p'-DDE	ug/L			0.10 U	0.10 U
p,p'-DDT	ug/L			0.10 U	0.10 U
Dieldrin	ug/L			0.10 U	0.10 U
Endosulfan I	ug/L			0.050 U	0.050 ∪
Endosulfan II	ug/L			0.10 U	0.10 U
Endosulfan Sulfate	ug/L			0.10 U	0.10 U
Endrin	ug/L			0.10 U	0.10 U
Endrin Aldehyde	ug/L			0.10 U	0.10 U
Endrin Ketone	ug/L			0.10 U	0.10 U
Heptachlor	ug/L			0.050 U	0.050 U
Heptachlor Epoxide	ug/L			0.050 U	0.050 U
p,p'-Methoxychlor	ug/L			0.50 U	0.50 U
Toxaphene	ug/L			5.0 U	5.0 U
1 Semi-Volatile Organic Compounds in Water					
Acenaphthene	ug/L			2.0 U	2.0 U
Acenaphthylene	ug/L			2.0 U	2.0 U
Anthracene	ug/L			2.0 U	2.0 U
Benzo(a)anthracene	ug/L			2.0 U	2.0 U
Benzo(a)pyrene	ug/L			2.0 U	2.0 U
Benzo(b)fluoranthene	ug/L			2.0 U	2.0 U
Benzo(g,h,i)perylene	ug/L			2.0 U	2.0 U
Benzo(k)fluoranthene	ug/L			2.0 U	2.0 U

ASR Number: 6910 RLAB Approved Samp

RLAB Approved Sample Analysis Results 10/26/2015

Analysis/ Analyte	Units	115	116	201	202
Benzoic acid	ùg/L	·		10 U	10 U
Benzyl alcohol	ug/L			5.0 U	5.0 U
bis(2-Chloroethoxy)methane	ug/L			2.0 ⊍	2.0 U
bis(2-Chloroethyl)ether	ug/L			2.0 U	2.0 U
bis(2-Chloroisopropyl)ether	ug/L			2.0 U	2.0 U
bis(2-Ethylhexyl)phthalate	ug/L			5.0 U	9.0
4-Bromophenyl-phenylether	ug/L			2.0 U	2.0 U
Butylbenzylphthalate	ug/L			5.0 U	5.0 U
Carbazole	ug/L			5.0 U	5.0 ป
4-Chloro-3-methylphenol	ug/L		•	5.0 U	5.0 U
4-Chloroaniline	ug/L			10 U	10 U
2-Chloronaphthalene	ug/L		•	2.0 U	2.0 U
2-Chlorophenol	ug/L			5.0 U	5.0 U
4-Chlorophenyl-phenylether	ug/L			2.0 U	2.0 U
Chrysene	ug/L			2.0 U	2.0 U
Di-n-butylphthalate	ug/L			5.0 U	5.0 U
Di-n-octylphthalate	ug/L			5.0 U	5.0 U
Dibenz(a,h)anthracene	ug/L			2.0 U	2.0 U
Dibenzofuran	ug/L			2.0 U	2.0 U
1,2-Dichlorobenzene	ug/L			2.0 U	2.0 U
1,3-Dichlorobenzene	ug/L			2.0 U	2.0 U
1,4-Dichlorobenzene	ug/L			2.0 U	2.0 Ú
3,3'-Dichlorobenzidine	ug/L			10 U	10 U
2,4-Dichlorophenol	ug/L			5.0 U	5.0 U
Diethylphthalate	ug/L			2.0 U	2.0 U
2,4-Dimethylphenol	ug/L			2.0 U	2.0 U
Dimethylphthalate	ug/L			2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	ug/L			10 U	10 U
2,4-Dinitrophenol	ug/L			10 U	10 U
2,4-Dinitrotoluene	ug/L		,	2.0 U	2.0 U
2,6-Dinitrotoluene	ug/L			2.0 U	2.0 U
Fluoranthene	ug/L			2.0 U	2.0 U
Fluorene	ug/L			2.0 U	2.0 U
Hexachlorobenzene	ug/L			2.0 U	2.0 U
Hexachlorobutadiene	ug/L			2.0 UJ	2.0 UJ
Hexachlorocyclopentadiene	ug/L			2.0 U	2.0 U
Hexachloroethane	ug/L			2.0 UJ	2.0 UJ
Indeno(1,2,3-cd)pyrene	ug/L			2.0 U	2.0 U
Isophorone	ug/L			2.0 U	2.0 U
2-Methylnaphthalene	ug/L		,	2.0 U	2.0 U
2-Methylphenol	ug/L			5.0 U	5.0 U
4-Methylphenol	ug/L			5.0 U	9.0
Naphthalene	ug/L			2.0 U	2.6
2-Nitroaniline	ug/L			5.0 U	5.0 U
3-Nitroaniline	ug/L			5.0 U	5.0 U

RLAB Approved Sample Analysis Results

Project ID: THDTLPA Project Desc: Tanglefoot Lane Site

Analysis/ Analyte	Units	115	116	201	202
4-Nitroaniline	ug/L			10 U	10 U
Nitrobenzene	ug/L			2.0 U	2.0 U
2-Nitrophenol	ug/L			5.0 U	5.0 U
4-Nitrophenol	ug/L			10 U	10 U
N-nitroso-di-n-propylamine	ug/L			5.0 U	5.0 U
N-nitrosodiphenylamine	ug/L			2.0 U	2.0 U
Pentachlorophenol ·	ug/Ŀ			5.0 U	5.0 U
Phenanthrene	ug/L			2.0 U	2.0 U
Phenol	ug/L			2.0 U	2.0 U
Pyrene	ug/L			2.0 U	2.0 ປ
1,2,4-Trichlorobenzene	ug/L			2.0 U	2.0 U
2,4,5-Trichlorophenol	ug/L			5.0 U	5.0 U
2,4,6-Trichlorophenol	ug/L			5.0 U	5.0 U
1 Semi-Volatile TPH (DRO & ORO) in Water I	by GC/FID				
TPH DRO	mg/L			0.5 U	0.5 U
TPH ORO	mg/L			2 U	2 U
1 VOCs in Water by GC/MS for Low Detection	n Limits				
Acetone	ug/L			5.0 U	350 U
Benzene	ug/L			0.50 U	35 U
Bromochloromethane	ug/L			0.50 U	35 U
Bromodichloromethane	ug/L			0.50 U	35 U
Bromoform	ug/L			0.50 UJ	35 UJ
Bromomethane	ug/L			0.50 U	35 U
2-Butanone	ug/L			5.0 U	350 U
Carbon Disulfide	ug/L			0. <u>5</u> 0 U	35 U
Carbon Tetrachloride	ug/L			0.50 U	35 U
Chlorobenzene	ug/L			0.50 U	35 U
Chloroethane	ug/L			0.50 U	84
Chloroform	ug/L			0.50 U	35 Ų
Chloromethane	ug/L			0.50 U	35 U
Cyclohexane	ug/L			0.50 U	35 U
1,2-Dibromo-3-Chloropropane	ug/L			0.50 U	35 U
Dibromochloromethane	ug/L 			0.50 U	35 U
1,2-Dibromoethane	ug/L			0.50 U	35 U
1,2-Dichlorobenzene	ug/L			0.50 U	35 U
1,3-Dichlorobenzene	ug/L			0.50 U	35 U
1,4-Dichlorobenzene	ug/L			0.50 U	35 U
Dichlorodifluoromethane	ug/L			0.50 U	35 U
1,1-Dichloroethane	ug/L			0.50 U 0.50 U	170 35 U
1,2-Dichloroethane	ug/L			0.50 U	35 U
1,1-Dichloroethene	ug/L			0.50 U	4500
cis-1,2-Dichloroethene	ug/L			0.50 U	4500 35 U
trans-1,2-Dichloroethene	ug/L			0.50 U	35 U
1,2-Dichloropropane	ug/L			0.50 U	35 U 35 U
cis-1,3-Dichloropropene	ug/L	•		0.50 0	35 U

10/26/2015

Project ID: THDTLPA

Analysis/ Analyte	Units	115	116	201	202
tudios 1.2 Dichloropropro				0.50 U	35 U
trans-1,3-Dichloropropene	ug/L			0.50 U	35 U
Ethyl Benzene	ug/L			5.0 U	
2-Hexanone	ug/L				350 U
Isopropylbenzene	ug/L			0.50 U	35 U
Methyl Acetate	ug/L			0.50 U	35 U
Methyl tert-butyl ether	ug/L			0.50 U	35 Ų
Methylcyclohexane	ug/L			0.50 U	35 U
Methylene Chloride	ug/L			0.50 U	35 U
4-Methyl-2-Pentanone	ug/L			5.0 U	350 U
Styrene	ug/L	·		0.50 U	35 U
1,1,2,2-Tetrachloroethane	ug/L			0.50 U	35 U
Tetrachloroethene	ug/L		•	0.50 U	35 U
Toluene	ug/L			0.50 U	99
1,2,3-Trichlorobenzene	ug/L			0.50 U	35 U
1,2,4-Trichlorobenzene	ug/L			0.50 U	35 U
1,1,1-Trichloroethane	ug/L			0.50 U	35 U
1,1,2-Trichloroethane	ug/L			0.50 U	35 U
Trichloroethene	ug/L			0.72	540
Trichlorofluoromethane	ug/L			0.50 U	35 U
1,1,2-Trichlorotrifluoroethane	ug/L			0.50 U	2700
Vinyl Chloride	ug/L			0.50 U	690
m and/or p-Xylene	ug/L			0.50 U	35 U
o-Xylene	ug/L			0.50 U	35 U
1 Volatile TPH in Water by GC/MS					- · · ·
TPH GRO	mg/L			0.04 U	8.33

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	203	203-FD	204	205
1 Herbicides in Water by GC/EC					
2,4,5-T	ug/L	0.050 U	0.050 U	0.050 U	0.050 U
2,4,5-TP	ug/L	0.050 U	0.050 U	0.050 U	0.050 U
2,4-D	ug/L	0.10 U	0.10 U	0.10 U	0.10 U
Dicamba	ug/L	0.050 U	0.050 U	0.050 U	0.26 U
Pentachlorophenol	ug/L	0.020 U	0.020 U	0.020 U	0.020 U
1 Mercury - Dissolved, in Water					
Mercury	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
1 Mercury in Water					
Mercury	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
1 Metals - Dissolved, in Water by ICP/MS					
Antimony	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Arsenic	ug/L	5.0	5.2	1.0 U	1.0 U
Barium	ug/L	104	82.0	118	207
Beryllium	ug/L	1.0 U	1.0 U	1.0 U	1,0 U
Cadmium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Chromium	ug/L	2.0 U	2.0 U	2.0 ∪	2.0 U
Cobalt	ug/L	1.2	1.2	5.0	1.0 U
Copper	ug/L	2.0 U	2.0 ∪	2.0 U	2.0 U
Lead	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Manganese	ug/L	485	502	380	195
Nickel	ug/L	1.8	1.9	6.8	2.2
Selenium	ug/L	5.0 U	5.0 U	10.3	5.0 U
Silvėr	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Thallium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Vanadium	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Zinc	ug/L	29.7	15.4	3.9	2.0 U
1 Metals in Water by ICP/MS					
Antimony	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Arsenic	ug/L	16.7	17.0	14.5	2.5 U
Barium	ug/L "	94.7	98.0	309	248
Beryllium	ug/L	1.0 U	1.0 U	1.6	1.0 U
Cadmium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Chromium	ug/L	13.4	14.0	31.3	3.7
Cobalt	ug/L	6.0	6.3	38.6	2.1
Copper	ug/L	10.7	11.4	38.3	4.4
Lead	ug/L	16.4	15.9	31.3	2.9
Manganese	ug/L	559	575	1490	299 5.3
Nickel	ug/L	9.9	10.5	49.1 9.0	5.0 U
Selenium	ug/L	5.0 U	5.0 U 1.0 U	9.0 1.0 U	1.0 U
Silver	ug/L	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U
Thallium Vanadium	ug/L ug/L	20.0	20.9	58.0	7.3
Zinc	ug/L ug/L	20.0 37.7	38.5	78.7	7.3 14.1
	uy/ L	37.7	30.3	73.7	1-7.1
1 Pesticides in Water by GC/EC Aldrin	ug/L	0.050 U	0.050 U	0.050 U	0.050 U

RLAB Approved Sample Analysis Results

Project ID: THDTLPA **Project Desc:** Tanglefoot Lane Site

Analysis/ Analyte	Units	203	203-FD	204	205
Aroclor 1016	ug/L	1.0 U	1.0 U	1.0 U	· 1.0 U
Aroclor 1221	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1232	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1242	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1248	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1254	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1260	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1262	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor 1268	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
A-BHC	ug/L	0.050 U	0.050 U	0.050 U	0.050 U
B-BHC	ug/L	0.050 U	0.050 U	0.050 U	0.050 U
D-BHC	ug/L	0.050 U	0.050 U	0.050 U	0.050 U
G-BHC	ug/L	0.050 U	0.050 U	0.050 ป	0.050 U
cis-Chlordane	ug/L	0.050 U	0.050 U	0.050 U	0.050 U
trans-Chlordane	ug/L	0.050 U	0.050 U	0.050 U	0.050 U
p,p'-DDD	ug/L	0.10 U	0.10 U	0.10 U	0.10 U
p,p'-DDE	ug/L :	0.10 U	0.10 U	0.10 U	0.10 U
p,p'-DDT	ug/L	0.10 U	0.10 U	0.10 U	0.10 U
Dieldrin	ug/L	0.10 U	0.10 U	0.10 U	0.10 U
Endosulfan I	ug/L	0.050 U	0.050 U	0.050 U	0.050 U
Endosulfan II	ug/L	0.10 U	0.10 U	0.10 U	0.10 U
Endosulfan Sulfate	ug/L	0.10 U	0.10 U	0.10 U	0.10 U
Endrin	ug/L	0.10 U	0.10 U	0.10 U	0.10 U
Endrin Aldehyde	ug/L	0.10 U	0.10 U	0.10 U	0.10 U
Endrin Ketone	ug/L	0.10 U	0.10 U	0.10 U	0.10 U
Heptachlor	ug/L	0.050 U	0.050 U	0.050 U	0.050 U
Heptachlor Epoxide	ug/L	0.050 U	0.050 U	0.050 U	0.050 U
p,p'-Methoxychlor	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Toxaphene	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
1 Semi-Volatile Organic Compounds in Water					
Acenaphthene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Acenaphthylene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Anthracene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Benzo(a)anthracene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Benzo(a)pyrene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Benzo(b)fluoranthene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Benzo(g,h,i)perylene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Benzo(k)fluoranthene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Benzoic acid	ug/L	10 U	10 U	10 U	10 U
Benzyl alcohol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
bis(2-Chloroethoxy)methane	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
bis(2-Chloroethyl)ether	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
bis(2-Chloroisopropyl)ether	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
bis(2-Ethylhexyl)phthalate	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
4-Bromophenyl-phenylether	ug/L	2.0 U	2.0 U	2.0 U	2.0 U

ASR Number: 6910 RLAB Approved Sample Analysis Results

Project ID: THDTLPA

Analysis/ Analyte	Units	203	203-FD	204	205
Butylbenzylphthalate	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Carbazole	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
4-Chloro-3-methylphenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
4-Chloroaniline	ug/L	10 U	10 U	10 U	10 U
2-Chloronaphthalene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
2-Chlorophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
4-Chlorophenyl-phenylether	ug/L	2.0 U	2.0 U	2.0 U	2.0 Ų
Chrysene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Di-n-butylphthalate	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Di-n-octylphthalate	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Dibenz(a,h)anthracene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Dibenzofuran	ug/L	2.0 U	2.0 ∪	2.0 U	2.0 U
1,2-Dichlorobenzene	ug/L	2.0 U	2.0 U	2.0 ∪	2.0 U
1,3-Dichlorobenzene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
1,4-Dichlorobenzene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine	ug/L	10 U	10 U	10 U	10 U
2,4-Dichlorophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Diethylphthalate	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dimethylphenol	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Dimethylphthalate	ug/L	2.0 U	2.0 ປ	2.0 ປ	2.0 U
4,6-Dinitro-2-methylphenol	ug/L	10 U	10 U	10 U	10 U
2,4-Dinitrophenol	ug/L	10 U	10 U	10 U	10 U
2,4-Dinitrotoluene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
2,6-Dinitrotoluene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Fluoranthene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Fluorene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Hexachlorobenzene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Hexachlorobutadiene	ug/L	2.0 UJ	2.0 บว	2.0 UJ	2.0 UJ
Hexachlorocyclopentadiene	ug/L	2.0 ป	2.0 U	2.0 U	2.0 U
Hexachloroethane	ug/L	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ
Indeno(1,2,3-cd)pyrene	ug/L	2.0 U	2.0 ป	2.0 U	2.0 U
Isophorone	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
2-Methylnaphthalene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
2-Methylphenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
4-Methylphenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 Ü
Naphthalene	ug/L	2.0 U	. 2.0 U	2.0 U	2.0 U
2-Nitroaniline	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
3-Nitroanlline	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
4-Nitroaniline	ug/L	10 U	10 U	10 U	10 U
Nitrobenzene	ug/L	2.0 U	2.0 U	2.0 U	2,0 U
2-Nitrophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
4-Nitrophenol	ug/L	10 U	10 U	10 U	10 U
N-nitroso-di-n-propylamine	ug/L	5.0 U	5.0 U	5.0 Ü	5.0 U
N-nitrosodiphenylamine	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Pentachlorophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U

ASR Number: 6910 RLAB Approved Sample Analysis Results

Project ID: THDTLPA

Analysis/ Analyte	Units	203	203-FD	204	205
Phenanthrene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Phenol	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Pyrene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
1,2,4-Trichlorobenzene	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
2,4,5-Trichlorophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
2,4,6-Trichlorophenol	ug/Ĺ	5,0 U	5.0 U	5.0 U	5.0 U
1 Semi-Volatile TPH (DRO & ORO) in Water by					
TPH DRO	mg/L	0.5 U	0.5 U	0.5 ป	0.5 U
TPH ORO	mg/L	2 U	2 U	2 U	2 U
1 VOCs in Water by GC/MS for Low Detection L	imits				
Acetone	ug/L	5.0 U	8.4 U	5.0 U	6.4
Benzene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Bromochloromethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Bromodichloromethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Bromoform	ug/L	0.50 UJ	0.84 UJ	0.50 UJ	0.50 UJ
Bromomethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
2-Butanone	ug/L	5.0 U	8.4 U	5.0 U	5.0 U
Carbon Disulfide	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Carbon Tetrachloride	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Chlorobenzene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Chloroethane	ug/L	์ 0.50 บ	0.84 U	0.50 บ	0.50 U
Chloroform	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Chloromethane	ug/L	0.50 U	0.84 U	0.50 บ	0.50 U
Cyclohexane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,2-Dibromo-3-Chloropropane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Dibromochloromethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,2-Dibromoethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,2-Dichlorobenzene	ug/L	0.50 U	0.84 U	0.50 ປ	0.50 U
1,3-Dichlorobenzene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,4-Dichlorobenzene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Dichlorodifluoromethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,1-Dichloroethane	ug/L	3.1	2.8	0.50 U	0.50 U
1,2-Dichloroethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,1-Dichloroethene	ug/L	0.85	0.84 U	0.50 U	0.50 U
cis-1,2-Dichloroethene	ug/L	76	58	0.50 U	0.59
trans-1,2-Dichloroethene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,2-Dichloropropane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
cis-1,3-Dichloropropene	ug/L	0.50 U	0.84 U	0.5 <u>0</u> U	0.50 U
trans-1,3-Dichloropropene	ug/L	0.50 ป	0.84 U	0.50 บ	0.50 U
Ethyl Benzene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
2-Hexanone	ug/L	5.0 U	8.4 U	5.0 U	5.0 U
Isopropylbenzene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Methyl Acetate	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Methyl tert-butyl ether	ug/L	0.50 U	0,84 U	0,50 U	0.50 U
Methylcyclohexane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U

RLAB Approved Sample Analysis Results

10/26/2015

Project ID: THDTLPA

Analysis/ Analyte	Units	203	203-FD	204	205
Methylene Chloride	ua/I	0.50 U	0.84 U	0.50 U	0.50 U
4-Methyl-2-Pentanone	ug/L ug/L	5.0 U	8.4 U	5.0 U	5.0 U
Styrene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,1,2,2-Tetrachloroethane		0.50 U	0.84 U	0.50 U	0.50 U
	ug/L		0.84 U		•
Tetrachloroethene	ug/L	0.50 U		0.50 U	0.50 U
Toluene	ug/L	1.3	1.3	0.50 U	0.50 U
1,2,3-Trichlorobenzene	ug/L	0.50 U	0.84 U	0.50 U	0.50 ป
1,2,4-Trichlorobenzene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,1,1-Trichloroethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,1,2-Trichloroethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Trichloroethene	ug/L	94	72	0.50 U	0.50 U
Trichlorofluoromethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1,1,2-Trichlorotrifluoroethane	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
Vinyl Chloride	ug/L	19	16	0.50 U	0.50 U
m and/or p-Xylene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
o-Xylene	ug/L	0.50 U	0.84 U	0.50 U	0.50 U
1 Volatile TPH in Water by GC/MS					
TPH GRO	mg/L	0.293	0.311	0.04 U	0.04 U

10/26/2015

RLAB Approved Sample Analysis Results

ASR Number: 6910
Project ID: THDTLPA

Analysis/ Analyte	Units	206	207	210-FB	211-FB
1 Herbicides in Water by GC/EC					
2,4,5-T	ug/L	0.050 U	0.050 U		0.050 บ
2,4,5-TP	ug/L	0.050 U	0.050 U		0.050 U
2,4-D	ug/L	0.10 U	0.10 U		0.10 U
Dicamba	ug/L	0.17 U	0.27		0.050 U
Pentachlorophenol	ug/L	0.020 U	0.020 U		0.020 U
1 Mercury - Dissolved, in Water	,				0.20.11
Mercury	ug/L	0.20 U	0.20 U		0.20 U
1 Mercury in Water		0.2011	0.2011		0.20.11
Mercury	ug/L	0.20 U	0.20 U		0.20 U
1 Metals - Dissolved, in Water by ICP/MS	/!	2.0 U	2.0 U		2.0 U
Antimony Arsenic	ug/L ug/L	1.2 U	1.0 U		1.0 U
Barium	ug/L	214	212		41.8
Beryllium	ug/L ug/L	1.0 U	1.0 U		1.0 U
Cadmium	ug/L	1.0 U	1.0 U		1.0 U
Chromium	ug/L ug/L	2.0 U	2.0 U		2.0 U
Cobalt	ug/L	1.0 U	1.0 U		1.0 U
Copper	ug/L	2.0 U	2.0 U		2.0 U
Lead	ug/L	1.0 U	1.0 U		1.0 U
Manganese	ug/L	520	415		87.5
Nickel	ug/L	2.2	2.2		1.0 U
Selenium	ug/L	5.0 U	5.0 U		5.0 U
Silver	ug/L	1.0 U	1.0 U		1.0 U
Thallium	ug/L	1.0 U	1.0 U		1.0 U
Vanadium	ug/L	5.0 U	5.0 U		5.0 U
Zinc	ug/L	2.0 U	2.0 U		2.1
1 Metals in Water by ICP/MS					
Antimony	ug/L	2.0 U	2.0 U		2.0 U
Arsenic	ug/L	1.6 U	1.1 U		1.0 U
Barium	ug/L	224	220		10.0 U
Beryllium	ug/L	1.0 U	1.0 U		1.0 U
Cadmium	ug/L	1.0 U	1.0 U		1.0 U
Chromium	ug/L	2.0 U	2.0 U		2.0 U
Cobalt	ug/L	1.0	1.0 U		1.0 U
Copper	ug/L	2.0 U	2.0 U		3.3
Lead	ug/L	1.0 U	1.0 U		1.0 U
Manganese	ug/L	532	428		1.0 U
Nickel	ug/L	2.3	2.2		1.0 U
Selenium	ug/L	5.0 U	5.0 U		5.0 U
Silver	ug/L	1.0 U	1.0 U		1.0 U
Thallium	ug/L 	1.0 U	1.0 U		1.0 U
Vanadium	ug/L	5.0 U	5.0 U		5.0 U
Zinc	ug/L	2.0 U	2.0 U		2.0 U
1 Pesticides in Water by GC/EC		0.050.11	0.050.11		0.050
Aldrin	ug/L	0.050 U	0.050 U		0.050 U

10/26/2015

RLAB Approved Sample Analysis Results

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	206	207	210-FB	211-FB
Aroclor 1016	ug/L	1.0 U	1.0 U		1.0 U
Aroclor 1221	ug/L	1.0 U	1.0 U		1.0 U
Aroclor 1232	ug/L	1.0 U	1.0 U		1.0 U
Aroclor 1242	ug/L	1.0 U	1.0 U		1.0 U
Aroclor 1248	ug/L	1.0 U	1.0 U		1.0 U
Aroclor 1254	ug/L	1.0 U	1.0 U		1.0 U
Aroclor 1260	ug/L	1.0 U	1.0 U		1.0 U
Aroclor 1262	ug/L	1.0 U	1.0 U		1.0 U
Aroclor 1268	ug/L	1.0 U	1.0 U		1.0 U
A-BHC	ug/L	0. 05 0 U	0.050 U		0.050 U
B-BHC	ug/L	0.050 U	0.050 U	•	0.050 U
D-BHC	ug/L	0.050 U	0.050 U		0.050 U
G-BHC	ug/L	0.050 U	0.050 U		0.050 U
cis-Chlordane	ug/L	0.050 U	0.050 U		0.050 U
trans-Chlordane	ug/L	0.050 U	0.050 U		0.050 U
p,p'-DDD	ug/L	0.10 U	0.10 U		0.10 U
p,p'-DDE	ug/L	0.10 U	0.10 U		0.10 U
p,p'-DDT	ug/L	0.10 U	0.10 U		0.10 U
Dieldrin	ug/L	0.10 U	0.10 U		0.10 U
Endosulfan I	ug/L	0.050 U	0.050 U		0.050 U
Endosulfan II	ug/L	0.10 U	0.10 U		0.10 U
Endosulfan Sulfate	ug/L	0.10 U	0.10 U		0.10 U
Endrin	ug/L	0.10 U	0.10 U		0.10 U
Endrin Aldehyde	ug/L	0.10 U	0.10 U		0.10 U
Endrin Ketone	ug/L	0.10 U	0.10 U		0.10 U
Heptachlor	ug/L	0.050 U	0.050 U		0.050 U
Heptachlor Epoxide	ug/L	0.050 U	0.050 U		0.050 U
p,p'-Methoxychlor	ug/L	0.50 U	0.50 บ		0.50 U
Toxaphene	ug/L	5.0 U	5.0 U		5.0 U
1 Semi-Volatile Organic Compounds in Water					
Acenaphthene	ug/L	2.0 U	2.0 U		2.0 U
Acenaphthylene	ug/L	2.0 U	2.0 U		2.0 U
Anthracene	ug/L	2.0 U	2.0 U		2.0 U
Benzo(a)anthracene	ug/L	2.0 U	2.0 U		2.0 U
Benzo(a)pyrene	ug/L	2.0 U	2.0 U		2.0 U
Benzo(b)fluoranthene	ug/L	2.0 U	2.0 U		2.0 U
Benzo(g,h,i)perylene	ug/L	2.0 U	2.0 UJ		2.0 U
Benzo(k)fluoranthene	ug/L	2.0 U	2.0 U		2.0 U
Benzoic acid	ug/L	10 U	10 U		10 U
Benzyl alcohol	ug/L	5.0 U	5.0 U		5.0 U
bis(2-Chloroethoxy)methane	ug/L	2.0 U	2.0 U		2.0 U
bis(2-Chloroethyl)ether	ug/L	2.0 U	2.0 U		2.0 U
bis(2-Chloroisopropyl)ether	ug/L	2.0 U	2.0 U		2.0 U
bis(2-Ethylhexyl)phthalate	ug/L	5.0 U	5.0 U		5.0 U
4-Bromophenyl-phenylether	ug/L	2.0 U	2.0 U		2.0 U

ASR Number: 6910 **Project ID:** THDTLPA

Analysis/ Analyte	Units	206	207	210-FB	211-FB
Pubulhanzulahthalata	ug/L	5.0 U	5.0 U		5.0 U
Butylbenzylphthalate Carbazole	ug/L	5.0 U	5.0 U		5.0 U
4-Chloro-3-methylphenol	ug/L ug/L	5.0 U	5.0 U		5.0 U
4-Chloroaniline	ug/L	10 U	10 U		10 U
2-Chloronaphthalene	ug/L	2.0 U	2.0 U		2.0 U
2-Chlorophenol	ug/L	5.0 U	5.0 U		5.0 U
4-Chlorophenyl-phenylether	ug/L	2.0 U	2.0 U		2.0 U
Chrysene	ug/L	2.0 U	2.0 U		2.0 U
Di-n-butylphthalate	ug/L	5.0 บ	5.0 U		5.0 U
Di-n-octylphthalate	ug/L	5.0 U	5.0 U		5.0 U
Dibenz(a,h)anthracene	ug/L	2.0 U	2.0 UJ		2.0 U
Dibenzofuran	ug/L	2.0 U	2.0 U		- 2.0 U
1,2-Dichlorobenzene	ug/L	2.0 U	2.0 U		2.0 U
1,3-Dichlorobenzene	ug/L	2.0 U	2.0 U		2.0 U
1,4-Dichlorobenzene	ug/L	2.0 ∪	2.0 U		2.0 U
3,3'-Dichlorobenzidine	ug/L	10 U	10 UJ		10 U
2,4-Dichlorophenol	ug/L	5.0 U	5.0 U		5.0 U
Diethylphthalate	ug/L	2.0 U	2.0 U		2.0 U
2,4-Dimethylphenol	ug/L	2.0 U	2.0 U		2,0 U
Dimethylphthalate	ug/L	2.0 U	2.0 U		2.0 U
4,6-Dinitro-2-methylphenol	ug/L	10 U	10 U		10 U
2,4-Dinitrophenol	ug/L	10 U	10 U		10 U
2,4-Dinitrotoluene	ug/L	2.0 U	2.0 U		2,0 U
2,6-Dinitrotoluene	ug/L	2.0 U	2.0 U		2.0 U
Fluoranthene	ug/L	2.0 U	2.0 U	•	2.0 U
Fluorene	ug/L	2.0 U	2.0 U		2.0 U
Hexachlorobenzene	ug/L	2.0 U	2.0 U		2.0 U
Hexachlorobutadiene	ug/L	2.0 UJ	2.0 UJ		2.0 UJ
Hexachlorocyclopentadiene	ug/L	2.0 U	2.0 U		2.0 U
Hexachloroethane	ug/L	2.0 UJ	2.0 UJ		2.0 UJ
Indeno(1,2,3-cd)pyrene	ug/L 	2.0 U	2.0 UJ		2.0 U
Isophorone	ug/L	2.0 U	2.0 U		2.0 U
2-Methylnaphthalene	ug/L	2.0 U	2.0 U		2.0 U
2-Methylphenol	ug/L	5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
4-Methylphenol	ug/L	5.0 U 2.0 U	2.0 U		2.0 U
Naphthalene	ug/L	5.0 U	2.0 U		5.0 U
2-Nitroaniline 3-Nitroaniline	ug/L ug/L	5.0 U	5.0 U		5.0 U
4-Nitroaniline	ug/L ug/L	10 U	10 U		10 U
Nitrobenzene	ug/L	2.0 U	2.0 U		2.0 U
2-Nitrophenol	ug/L	5.0 U	5.0 U		5.0 U
4-Nitrophenol	ug/L ug/L	10 U	10 U		10 U
N-nitroso-di-n-propylamine	ug/L ug/L	5.0 U	5.0 U		5.0 U
N-nitrosodiphenylamine	ug/L	2.0 U	2.0 U		2.0 U
Pentachlorophenol	ug/L	5.0 U	5.0 U		5.0 U
	- J. –				-

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	206	207	210-FB	211-FB
Phenanthrene	ug/L	2.0 U	2.0 U		2.0 U
Phenol	ug/L	2.0 U	2.0 U		2.0 U
Pyrene	ug/L	2.0 U	2.0 U		2.0 U
1,2,4-Trichlorobenzene	ug/L	2.0 U	2.0 U		2.0 U
2,4,5-Trichlorophenol	ug/L	5.0 U	5.0 U		5.0 U
2,4,6-Trichlorophenol	ug/L	5.0 U	5.0 U		5.0 U
1 Semi-Volatile TPH (DRO & ORO) in Water by	GC/FID				
TPH DRO	mg/L	0.5 U	0.5 U		0.5 U
TPH ORO	mg/L	2 U	2 U		2 U
1 VOCs in Water by GC/MS for Low Detection L	imits				
Acetone	ug/L	5.0 U	5.0 U	5.7	5.7
Benzene	ug/L	0.50 ป	0.50 U	0.50 U	0.50 U
Bromochloromethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Bromodichloromethane	ug/L	. 0.50 U	0.50 U	0.50 U	0.50 U
Bromoform	ug/L	0.50 ปั	0.50 UJ	0.50 UJ	0.50 UJ
Bromomethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
2-Butanone	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Carbon Disulfide	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Carbon Tetrachloride	ug/L	0.50 U	0.50 U	0.50 บ	0.50 U
Chlorobenzene	ug/L	0.50 U	0.50 U	0.50 U	0.50 ป
Chloroethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 บ
Chloroform	ug/L	0.50 U	0.50 U	1.0	0.99
Chloromethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Cyclohexane	ug/L	0.50 U	0.50 บ	0.50 U	0.50 U
1,2-Dibromo-3-Chloropropane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Dibromochloromethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 บ
1,2-Dibromoethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,2-Dichlorobenzene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,3-Dichlorobenzene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Dichlorodifluoromethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,1-Dichloroethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,2-Dichloroethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,1-Dichloroethene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
cis-1,2-Dichloroethene	ug/L	3.6	1.9	0.50 U	0.50 U
trans-1,2-Dichloroethene	ug/L 	1.5	0.66	0.50 U	0.50 U
1,2-Dichloropropane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
cis-1,3-Dichloropropene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
trans-1,3-Dichloropropene	ug/L	0.50 U	0.50 U	0.50 U	0,50 U
Ethyl Benzene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
2-Hexanone	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Methyl Acetate	ug/L	, 0.50 U	0.50 U	0.50 U	0.50 U
Methyl tert-butyl ether	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Methylcyclohexane	ug/L	0.50 U	0.50 U	0.50 ป	0.50 U

RLAB Approved Sample Analysis Results

10/26/2015

Project ID: THDTLPA

Analysis/ Analyte	Units	206	207	210-FB	211-FB
	·				
Methylene Chloride	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
4-Methyl-2-Pentanone	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Styrene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,1,2,2-Tetrachloroethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Tetrachloroethene	ug/L	0.50 U	0.50 U	0.50 U	0.50 ป
Toluene	ug/L	0.50 U	0.50 ป	0.50 U	0.50 U
1,2,3-Trichlorobenzene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,2,4-Trichlorobenzene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,1,1-Trichloroethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,1,2-Trichloroethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Trichloroethene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Trichlorofluoromethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1,1,2-Trichlorotrifluoroethane	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
Vinyl Chloride	ug/L	1.2	0.50 U	0.50 U	0.50 U
m and/or p-Xylene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
o-Xylene	ug/L	0.50 U	0.50 U	0.50 U	0.50 U
1 Volatile TPH in Water by GC/MS					
TPH GRO	mg/L	0.0539	0.04 U	0.04 U	0.04 U

RLAB Approved Sample Analysis Results

Project ID: THDTLPA

Analysis/ Analyte	Units	212	213-FB
1 Herbicides in Water by GC/EC			
2,4,5-T	ug/L	0.050 U	
2,4,5-TP	ug/L	0.050 U	
2,4-D	ug/L	0.10 U	
Dicamba	ug/L	0.050 U	
Pentachlorophenol	ug/L	0.020 U	
1 Mercury - Dissolved, in Water Mercury	ug/L	0.20 U	
1 Mercury in Water			
Mercury	ug/L	0.20 U	
1 Metals - Dissolved, in Water by ICP/MS			
Antimony	ug/L 	2.0 U	
Arsenic	ug/L	1.0 U	
Barium	ug/L	10.0 U	
Beryllium	ug/L	1.0 U	
Cadmium	ug/L	1.0 U	
Chromium	ug/L	2.0 U	
Cobalt	ug/L	1.0 U	
Copper	ug/L	2.0 U	
Lead	ug/L	1.0 U	-
Manganese	u g/ L	1.0 U	
Nickel	ug/L	1.0 U	
Selenium	ug/L	5.0 U	
Silver	ug/L	1.0 U	
Thallium	ug/L	1.0 U	
Vanadium	ug/L	5.0 U	
Zinc	ug/L	2.2	
1 Metals in Water by ICP/MS			
Antimony	ug/L	2.0 U	
Arsenic	ug/L	1.0 U	
Barlum	ug/L	10.0 U	
Beryllium	ug/L	1.0 U	
Cadmium	ug/L	1.0 U	
Chromium	ug/L	2.0 U	
Cobalt	ug/L	1.0 U	
Copper	ug/L	2.0 U	
Lead	ug/L	1.0 U	
Manganese	ug/L	1.0 U	
Nickel	ug/L	1.0 U	
Selenium	ug/L	5.0 U	
Silver	ug/L	1.0 U	
Thaillium	ug/L	1.0 U	
Vanadium	ug/L	5.0 U	
Zinc	ug/L	2.0 U	
1 Pesticides in Water by GC/EC			
Aldrin	ug/L	0.050 U	

RLAB Approved Sample Analysis Results

Project ID: THDTLPA Pr

Analysis/ Analyte	Units	212	213-FB
Aroclor 1016	ug/L	1.0 U	
Aroclor 1221	ug/L	1.0 U	
Aroclor 1232	ug/L	1.0 U	
Aroclor 1242	ug/L	1.0 U	
Aroclor 1248	ug/L	1.0 U	
Aroclor 1254	ug/L	1.0 U	
Aroclor 1260	ug/L	1.0 U	
Aroclor 1262	ug/L	1.0 U	
Aroclor 1268	ug/L	1.0 U	
A-BHC	ug/L	0.050 ป	
B-BHC	ug/L	0.050 U	
D-BHC	ug/L	0.050 U	
G-BHC	ug/L	0.050 U	
cis-Chlordane	ug/L	0.050 U	
trans-Chlordane	ug/L	0.050 U	
p,p'-DDD	ug/L	0.10 U	
p,p'-DDE	ug/L	0.10 U	
p,p'-DDT	ug/L	0.10 U	
Dieldrin	ųg/L	0,10 U	
Endosulfan I	ug/L	0.050 U	
Endosulfan II	ug/L	0.10 U	
Endosulfan Sulfate	ug/L	0.10 U	
Endrin	ug/Ļ	0.10 U	
Endrin Aldehyde	ug/L	0.10 U	
Endrin Ketone	ug/L	0.10 U	
Heptachlor	ug/L	0.050 U	
Heptachlor Epoxide	ug/L	0.050 U	
p,p'-Methoxychlor	ug/L	0.50 U	
Toxaphene	ug/L	5.0 U	
1 Semi-Volatile Organic Compounds in Water			
Acenaphthene	ug/L	2.0 U	
Acenaphthylene	ug/Ļ	2.0 U	
Anthracene	ug/L	2.0 U	
Benzo(a)anthracene	ug/L	2.0 U	
Benzo(a)pyrene	ug/L	2.0 U	
Benzo(b)fluoranthene	ug/L	2.0 U	
Benzo(g,h,i)perylene	ug/L	2.0 U	
Benzo(k)fluoranthene	ug/L	2.0 U	
Benzoic acid	ug/L	10 U	
Benzyl alcohol	ug/L	5.0 U	
bis(2-Chloroethoxy)methane	ug/L	2.0 ∪	
bis(2-Chloroethyl)ether	ug/L	2.0 U	
bis(2-Chloroisopropyl)ether	ug/L	2.0 U	
bis(2-Ethylhexyl)phthalate	ug/L	5.0 U	
4-Bromophenyl-phenylether	ug/L	2.0 U	

RLAB Approved Sample Analysis Results

Project ID: THDTLPA

Analysis/ Analyte	Units	212	213-FB
Butylbenzylphthalate	ug/L	5.0 U	
Carbazole	ug/L	5.0 U	
4-Chloro-3-methylphenol	ug/L	5.0 U	
4-Chloroaniline	ug/L	10 U	
2-Chloronaphthalene	ug/L	2.0 U	
2-Chlorophenol	ug/L	5.0 U	
4-Chlorophenyl-phenylether	ug/L	2.0 U	
Chrysene	ug/L	2.0 U	
Di-n-butylphthalate	ug/L	5.0 U	
Di-n-octylphthalate	ug/L	5.0 U	
Dibenz(a,h)anthracene	ug/L	2.0 U	
Dibenzofuran	ug/L	2.0 U	
1,2-Dichlorobenzene	ug/L	2.0 U	
1,3-Dichlorobenzene	ug/L	2.0 U	
1,4-Dichlorobenzene	ug/L	2.0 U	
3,3'-Dichlorobenzidine	ug/L	10 U	
2,4-Dichlorophenol	ug/L	5.0 U	
Diethylphthalate	ug/L	2.0 U	
2,4-Dimethylphenol	ug/L	2.0 U	
Dimethylphthalate	ug/L	2.0 U	
4,6-Dinitro-2-methylphenol	ug/L	10 U	
2,4-Dinitrophenol	ug/L	10 U	
2,4-Dinitrotoluene	ug/L	2.0 U	
2,6-Dinitrotoluene	ug/L	2.0 U	
Fluoranthene	ug/L	2.0 U	
Fluorene	ug/L	2.0 U	
Hexachlorobenzene	ug/L	2.0 U	
Hexachlorobutadiene	ug/L	2.0 UJ	
Hexachlorocyclopentadiene	ug/L	2.0 U	
Hexachloroethane	ug/L	2.0 UJ	
Indeno(1,2,3-cd)pyrene	ug/L	2.0 U	
Isophorone	ug/L	2.0 U	
2-Methylnaphthalene	ug/L	2.0 U	
2-Methylphenol	ug/L	5.0 U	
4-Methylphenol	ug/L	5.0 U	
Naphthalene	ug/L	2.0 U	
2-Nitroaniline	ug/L	5.0 U	
3-Nitroaniline	ug/L	5.0 U	
4-Nitroaniline	ug/L	10 U	
Nitrobenzene	ug/L	2.0 U	
2-Nitrophenol	ug/L	5.0 U	•
4-Nitrophenol	ug/L	10 U	
N-nitroso-di-n-propylamine	ug/L	5.0 U	
N-nitrosodiphenylamine	ug/L	2.0 U	
Pentachlorophenol	. ug/L	5.0 U	

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	212	213-FB
Phenanthrene	ug/L	2.0 U	
Phenol	ug/L	2.0 U	
Pyrene	ug/L	2.0 U	
1,2,4-Trichlorobenzene	ug/L	2.0 U	
2,4,5-Trichlorophenol	ug/L	5.0 U	
2,4,6-Trichlorophenol	uġ/L	5.0 U	
1 Semi-Volatile TPH (DRO & ORO) in Water	=		
TPH DRO	mg/L	0.5 U	
TPH ORO	mg/L	2 U	
1 VOCs in Water by GC/MS for Low Detection	on Limits		
Acetone	ug/L	5.0 U	5.0 U
Benzene	ug/L	0.50 U	0.50 U
Bromochloromethane	ug/L	0.50 U	0.50 U
Bromodichloromethane	ug/L	0.50 U	0.50 U
Bromoform	ug/L	0.50 ปป	0.50 UJ
Bromomethane	ug/L	0.50 U	0.50 U
2-Butanone	ug/L	5.0 U	5.0 U
Carbon Disulfide	ug/L	0.50 U	0.50 U
Carbon Tetrachloride	ug/L	0.50 U	0.50 U
Chlorobenzene	ug/L	0.50 U	0.50 U
Chloroethane	ug/L	0.50 U	0.50 U
Chloroform	ug/L	0.74	0.50 U
Chloromethane	ug/L	0.50 U	0.50 U
Cyclohexane	ug/L	0.50 U	0.50 U
1,2-Dibromo-3-Chloropropane	ug/L	0.50 U	0.50 U
Dibromochloromethane	ug/L	0.50 U	0.50 U
1,2-Dibromoethane	ug/L	0.50 U	0.50 U
1,2-Dichlorobenzene	ug/L	0.50 U	0.50 U
1,3-Dichlorobenzene	ug/L	0.50 U	0.50 U
1,4-Dichlorobenzene	ug/L	0.50 U	0.50 U
Dichlorodifluoromethane	ug/L	0.50 U	0.50 U
1,1-Dichloroethane	ug/L	0.50 U	0.50 U
1,2-Dichloroethane	ug/L	0.50 ป	0.50 U
1,1-Dichloroethene	ug/L	0.50 U	0.50 ป
cis-1,2-Dichloroethene	ug/L	0.50 U	0.50 ป
trans-1,2-Dichloroethene	ug/Ĺ	0.50 U	0.50 U
1,2-Dichloropropane	ug/L	0.50 U	0.50 U
cis-1,3-Dichloropropene	ug/L	0.50 U	0.50 U
trans-1,3-Dichloropropene	ug/L	0.50 U	0.50 U
Ethyl Benzene	ug/L	0.50 U	0.50 U
2-Hexanone	ug/L	5.0 U	5.0 U
Isopropylbenzene	ug/L	0.50 U	0.50 U
Methyl Acetate	ug/L	0.50 U	0.50 U
Methyl tert-butyl ether	ug/L	0.50 U	0.50 U
Methylcyclohexane	ug/L	0.50 U	0.50 U

Project ID: THDTLPA

ASR Number: 6910

Analysis/ Analyte	Units	212	213-FB
Methylene Chloride	. ug/L	0.50 U	0.50 U
4-Methyl-2-Pentanone	ug/L	5.0 U	5.0 U
Styrene	ug/L	0.50 U	0.50 U
1,1,2,2-Tetrachloroethane	ug/L	0.50 U	0.50 U
Tetrachloroethene	ug/L	0.50 ป	0.50 U
Toluene	ug/L	0.50 U	0.50 U
1,2,3-Trichlorobenzene	ug/L	0.50 U	0.50 U
1,2,4-Trichlorobenzene	ug/L	0.50 U	0.50 U
1,1,1-Trichloroethane	ug/L	0.50 U	0.50 U
1,1,2-Trichloroethane	ug/L	0.50 U	0.50 U
Trichloroethene	ug/L	0.50 U	0.50 U
Trichlorofluoromethane	ug/L	0.50 U	0.50 U
1,1,2-Trichlorotrifluoroethane	ug/L	0.50 U	0.50 U
Vinyl Chloride	ug/L	0.50 U	0.50 U
m and/or p-Xylene	ug/L	0.50 U	0.50 U
o-Xylene	ug/L	0.50 U	0.50 ป
1 Volatile TPH in Water by GC/MS			
TPH GRO	mg/L	0.04 U	0.04 U

United States Environmental Protection Agency Region VII 300 Minnesota Avenue Kansas City, KS 66101

Date:	
Subje	Project ID: THDTLPA Project Description: Tanglefoot Lane Site
Fro	m: Todd Davis SUPR/ERNB
. 1	O: Alisha Claycamp ENSV/CARB
Ą۱	have received and reviewed the Transmittal of Sample Analysis Results for the above-referenced halytical Services Request(ASR) and have indicated my findings below by checking one of the exes for Data Disposition.
	understand all samples will be disposed upon receipt of this form, unless samples are requested be held. If I do not return this form all samples will be disposed of on
11	RELEASED" - Read-only to all Region 7 employees and contractors that have R7LIMS Customer" account. All Samples may be disposed of upon receipt of this form if not requested to e held.
	Project Manager Accessible" - Available on the LAN in R7LIMS for my use only. All Samples may e disposed of upon receipt of this form if not requested to be held.
t	Archived" - THIS DATA IS OF A SENSITIVE NATURE. Any future reports must be requested arough the laboratory. All samples may be disposed of upon receipt of the form if not requested by be held.
v	old Samples - I have determined that the samples need to be held until, after they will be disposed of in accordance with applicable regulations. he reason for the hold is:
	☐ Samples are associated with a legal proceeding.
	Question/Concern with data - possible reanalysis requested.
	Other: